1.Bioactive metabolites: A clue to the link between MASLD and CKD?
Wen-Ying CHEN ; Jia-Hui ZHANG ; Li-Li CHEN ; Christopher D. BYRNE ; Giovanni TARGHER ; Liang LUO ; Yan NI ; Ming-Hua ZHENG ; Dan-Qin SUN
Clinical and Molecular Hepatology 2025;31(1):56-73
Metabolites produced as intermediaries or end-products of microbial metabolism provide crucial signals for health and diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD). These metabolites include products of the bacterial metabolism of dietary substrates, modification of host molecules (such as bile acids [BAs], trimethylamine-N-oxide, and short-chain fatty acids), or products directly derived from bacteria. Recent studies have provided new insights into the association between MASLD and the risk of developing chronic kidney disease (CKD). Furthermore, alterations in microbiota composition and metabolite profiles, notably altered BAs, have been described in studies investigating the association between MASLD and the risk of CKD. This narrative review discusses alterations of specific classes of metabolites, BAs, fructose, vitamin D, and microbiota composition that may be implicated in the link between MASLD and CKD.
2.Cloning, subcellular localization and expression analysis of SmIAA7 gene from Salvia miltiorrhiza
Yu-ying HUANG ; Ying CHEN ; Bao-wei WANG ; Fan-yuan GUAN ; Yu-yan ZHENG ; Jing FAN ; Jin-ling WANG ; Xiu-hua HU ; Xiao-hui WANG
Acta Pharmaceutica Sinica 2025;60(2):514-525
The auxin/indole-3-acetic acid (Aux/IAA) gene family is an important regulator for plant growth hormone signaling, involved in plant growth, development, as well as response to environmental stresses. In the present study, we identified
3.Bioactive metabolites: A clue to the link between MASLD and CKD?
Wen-Ying CHEN ; Jia-Hui ZHANG ; Li-Li CHEN ; Christopher D. BYRNE ; Giovanni TARGHER ; Liang LUO ; Yan NI ; Ming-Hua ZHENG ; Dan-Qin SUN
Clinical and Molecular Hepatology 2025;31(1):56-73
Metabolites produced as intermediaries or end-products of microbial metabolism provide crucial signals for health and diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD). These metabolites include products of the bacterial metabolism of dietary substrates, modification of host molecules (such as bile acids [BAs], trimethylamine-N-oxide, and short-chain fatty acids), or products directly derived from bacteria. Recent studies have provided new insights into the association between MASLD and the risk of developing chronic kidney disease (CKD). Furthermore, alterations in microbiota composition and metabolite profiles, notably altered BAs, have been described in studies investigating the association between MASLD and the risk of CKD. This narrative review discusses alterations of specific classes of metabolites, BAs, fructose, vitamin D, and microbiota composition that may be implicated in the link between MASLD and CKD.
4.Bioactive metabolites: A clue to the link between MASLD and CKD?
Wen-Ying CHEN ; Jia-Hui ZHANG ; Li-Li CHEN ; Christopher D. BYRNE ; Giovanni TARGHER ; Liang LUO ; Yan NI ; Ming-Hua ZHENG ; Dan-Qin SUN
Clinical and Molecular Hepatology 2025;31(1):56-73
Metabolites produced as intermediaries or end-products of microbial metabolism provide crucial signals for health and diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD). These metabolites include products of the bacterial metabolism of dietary substrates, modification of host molecules (such as bile acids [BAs], trimethylamine-N-oxide, and short-chain fatty acids), or products directly derived from bacteria. Recent studies have provided new insights into the association between MASLD and the risk of developing chronic kidney disease (CKD). Furthermore, alterations in microbiota composition and metabolite profiles, notably altered BAs, have been described in studies investigating the association between MASLD and the risk of CKD. This narrative review discusses alterations of specific classes of metabolites, BAs, fructose, vitamin D, and microbiota composition that may be implicated in the link between MASLD and CKD.
5.Predicting Hepatocellular Carcinoma Using Brightness Change Curves Derived From Contrast-enhanced Ultrasound Images
Ying-Ying CHEN ; Shang-Lin JIANG ; Liang-Hui HUANG ; Ya-Guang ZENG ; Xue-Hua WANG ; Wei ZHENG
Progress in Biochemistry and Biophysics 2025;52(8):2163-2172
ObjectivePrimary liver cancer, predominantly hepatocellular carcinoma (HCC), is a significant global health issue, ranking as the sixth most diagnosed cancer and the third leading cause of cancer-related mortality. Accurate and early diagnosis of HCC is crucial for effective treatment, as HCC and non-HCC malignancies like intrahepatic cholangiocarcinoma (ICC) exhibit different prognoses and treatment responses. Traditional diagnostic methods, including liver biopsy and contrast-enhanced ultrasound (CEUS), face limitations in applicability and objectivity. The primary objective of this study was to develop an advanced, light-weighted classification network capable of distinguishing HCC from other non-HCC malignancies by leveraging the automatic analysis of brightness changes in CEUS images. The ultimate goal was to create a user-friendly and cost-efficient computer-aided diagnostic tool that could assist radiologists in making more accurate and efficient clinical decisions. MethodsThis retrospective study encompassed a total of 161 patients, comprising 131 diagnosed with HCC and 30 with non-HCC malignancies. To achieve accurate tumor detection, the YOLOX network was employed to identify the region of interest (ROI) on both B-mode ultrasound and CEUS images. A custom-developed algorithm was then utilized to extract brightness change curves from the tumor and adjacent liver parenchyma regions within the CEUS images. These curves provided critical data for the subsequent analysis and classification process. To analyze the extracted brightness change curves and classify the malignancies, we developed and compared several models. These included one-dimensional convolutional neural networks (1D-ResNet, 1D-ConvNeXt, and 1D-CNN), as well as traditional machine-learning methods such as support vector machine (SVM), ensemble learning (EL), k-nearest neighbor (KNN), and decision tree (DT). The diagnostic performance of each method in distinguishing HCC from non-HCC malignancies was rigorously evaluated using four key metrics: area under the receiver operating characteristic (AUC), accuracy (ACC), sensitivity (SE), and specificity (SP). ResultsThe evaluation of the machine-learning methods revealed AUC values of 0.70 for SVM, 0.56 for ensemble learning, 0.63 for KNN, and 0.72 for the decision tree. These results indicated moderate to fair performance in classifying the malignancies based on the brightness change curves. In contrast, the deep learning models demonstrated significantly higher AUCs, with 1D-ResNet achieving an AUC of 0.72, 1D-ConvNeXt reaching 0.82, and 1D-CNN obtaining the highest AUC of 0.84. Moreover, under the five-fold cross-validation scheme, the 1D-CNN model outperformed other models in both accuracy and specificity. Specifically, it achieved accuracy improvements of 3.8% to 10.0% and specificity enhancements of 6.6% to 43.3% over competing approaches. The superior performance of the 1D-CNN model highlighted its potential as a powerful tool for accurate classification. ConclusionThe 1D-CNN model proved to be the most effective in differentiating HCC from non-HCC malignancies, surpassing both traditional machine-learning methods and other deep learning models. This study successfully developed a user-friendly and cost-efficient computer-aided diagnostic solution that would significantly enhances radiologists’ diagnostic capabilities. By improving the accuracy and efficiency of clinical decision-making, this tool has the potential to positively impact patient care and outcomes. Future work may focus on further refining the model and exploring its integration with multimodal ultrasound data to maximize its accuracy and applicability.
6.Effect and mechanism of alkaloids from Portulacae Herba on ulcerative colitis in mice based on TLR4/MyD88/NF-κB signaling pathway.
Jia-Hui ZHENG ; Ying-Ying SONG ; Tian-Ci ZHANG ; Wen-Ting WANG ; Zhi-Ping YANG ; Jin-Xia AI
China Journal of Chinese Materia Medica 2025;50(4):874-881
This study investigated the functions and regulatory mechanism of Portulacae Herba and its chemical components on the Toll-like receptor 4(TLR4)/myeloid differentiation primary response 88(MyD88)/nuclear factor kappa B(NF-κB) inflammatory signaling pathway in the colon tissue of mice with dextran sodium sulfate(DSS)-induced ulcerative colitis(UC). A total of 35 mice were randomly divided into groups, including a blank group, a model group, a mesalazine group(0. 5 g·kg~(-1)), and low, medium,and high dose alkaloids from Portulacae Herba groups(9, 18, 36 mg·kg~(-1)), and a combination treatment group, with 5 mice in each group. The blank group was given purified water, while the other groups were continuously given a 3% DSS solution for 7 days to induce the UC model. From day 8 onwards, the treatment group received oral gavage according to the prescribed doses for 14 days. The overall condition, body weight, stool characteristics, and presence of blood in the stool were recorded daily. After the experiment, the disease activity index(DAI) was assessed for each group, and colon length was measured. Histopathological changes in colon tissue were examined using hematoxylin-eosin(HE) staining. The levels of pro-inflammatory cytokines, tumor necrosis factor-α(TNF-α),and interleukin-1β( IL-1β) in serum were measured by enzyme-linked immunosorbent assay( ELISA). The protein and m RNA expression of TLR4, MyD88, and NF-κB in colon tissue were measured using Western blot and quantitative real-time PCR(qPCR).Compared to the blank group, the model group showed a significant decrease in body weight, a notable increase in DAI scores, a significant shortening of colon length, and evident histopathological damage. The levels of inflammatory cytokines TNF-α and IL-1β in the serum were significantly elevated, and the protein and m RNA expression of TLR4, MyD88, and NF-κB in colon tissue were significantly up-regulated. In contrast, the alkaloids from Portulacae Herba treatment groups significantly improved symptoms and reduced body weight loss in mice, decreased DAI scores, alleviated colon shortening, lowered serum levels of TNF-α and IL-1β,significantly down-regulated the expression levels of TLR4, MyD88, and NF-κB proteins and genes in colon tissue, as well as reduced histopathological damage. Therefore, the study suggests that alkaloids from Portulacae Herba can alleviate intestinal inflammation damage in DSS-induced UC mice, with its mechanism involving the TLR4/MyD88/NF-κB signaling pathway.
Animals
;
Colitis, Ulcerative/immunology*
;
Toll-Like Receptor 4/immunology*
;
Myeloid Differentiation Factor 88/metabolism*
;
Mice
;
NF-kappa B/metabolism*
;
Signal Transduction/drug effects*
;
Male
;
Alkaloids/administration & dosage*
;
Drugs, Chinese Herbal/administration & dosage*
;
Humans
;
Female
;
Colon/metabolism*
;
Disease Models, Animal
7.Bear Bile Powder Ameliorates LPS-Induced Acute Lung Injury by Inhibiting CD14 Pathway and Improving Intestinal Flora: Exploration of "Fei (Lung)-Dachang (Large Intestine) Interaction" Theory.
Long CHENG ; Hui-Ling TIAN ; Hong-Yuan LEI ; Ying-Zhou WANG ; Ma-Jing JIAO ; Yun-Hui LIANG ; Zhi-Zheng WU ; Xu-Kun DENG ; Yong-Shen REN
Chinese journal of integrative medicine 2025;31(9):821-829
OBJECTIVE:
To explore the effect of bear bile powder (BBP) on acute lung injury (ALI) and the underlying mechanism.
METHODS:
The chemical constituents of BBP were analyzed by ultra-high-pressure liquid chromatography-mass spectrometry (UPLC-MS). After 7 days of adaptive feeding, 50 mice were randomly divided into 5 groups by a random number table (n=10): normal control (NC), lipopolysaccharide (LPS), dexamethasone (Dex), low-, and high-dose BBP groups. The dosing cycle was 9 days. On the 12th and 14th days, 20 µL of Staphylococcus aureus solution (bacterial concentration of 1 × 10-7 CFU/mL) was given by nasal drip after 1 h of intragastric administration, and the mice in the NC group was given the same dose of phosphated buffered saline (PBS) solution. On the 16th day, after 1 h intragastric administration, 100 µL of LPS solution (1 mg/mL) was given by tracheal intubation, and the same dose of PBS solution was given to the NC group. Lung tissue was obtained to measure the myeloperoxidase (MPO) activity, the lung wet/dry weight ratio and expressions of CD14 and other related proteins. The lower lobe of the right lung was obtained for pathological examination. The concentrations of inflammatory cytokines including interleukin (IL)-6, tumour necrosis factor α (TNF-α ) and IL-1β in the bronchoalveolar lavage fluid (BALF) were detected by enzyme linked immunosorbent assay, and the number of neutrophils was counted. The colonic contents of the mice were analyzed by 16 sRNA technique and the contents of short-chain fatty acids (SCFAs) were measured by gas chromatograph-mass spectrometer (GC-MS).
RESULTS:
UPLC-MS revealed that the chemical components of BBP samples were mainly tauroursodeoxycholic acid and taurochenodeoxycholic acid sodium salt. BBP reduced the activity of MPO, concentrations of inflammatory cytokines, and inhibited the expression of CD14 protein, thus suppressing the activation of NF-κB pathway (P<0.05). The lung histopathological results indicated that BBP significantly reduced the degree of neutrophil infiltration, cell shedding, necrosis, and alveolar cavity depression. Moreover, BBP effectively regulated the composition of the intestinal microflora and increased the production of SCFAs, which contributed to its treatment effect (P<0.05).
CONCLUSIONS
BBP alleviates lung injury in ALI mouse through inhibiting activation of NF-κB pathway and decreasing expression of CD14 protein. BBP may promote recovery of ALI by improving the structure of intestinal flora and enhancing metabolic function of intestinal flora.
Animals
;
Acute Lung Injury/pathology*
;
Lipopolysaccharides
;
Ursidae
;
Gastrointestinal Microbiome/drug effects*
;
Bile/chemistry*
;
Lipopolysaccharide Receptors/metabolism*
;
Powders
;
Male
;
Lung/drug effects*
;
Mice
;
Peroxidase/metabolism*
;
Signal Transduction/drug effects*
;
Cytokines/metabolism*
8.Effect of Hesperidin on Chronic Unpredictable Mild Stress-Related Depression in Rats through Gut-Brain Axis Pathway.
Hui-Qing LIANG ; Shao-Dong CHEN ; Yu-Jie WANG ; Xiao-Ting ZHENG ; Yao-Yu LIU ; Zhen-Ying GUO ; Chun-Fang ZHANG ; Hong-Li ZHUANG ; Si-Jie CHENG ; Xiao-Hong GU
Chinese journal of integrative medicine 2025;31(10):908-917
OBJECTIVES:
To determine the pharmacological impact of hesperidin, the main component of Citri Reticulatae Pericarpium, on depressive behavior and elucidate the mechanism by which hesperidin treats depression, focusing on the gut-brain axis.
METHODS:
Fifty-four Sprague Dawley male rats were randomly allocated to 6 groups using a random number table, including control, model, hesperidin, probiotics, fluoxetine, and Citri Reticulatae Pericarpium groups. Except for the control group, rats in the remaining 5 groups were challenged with chronic unpredictable mild stress (CUMS) for 21 days and housed in single cages. The sucrose preference test (SPT), immobility time in the forced swim test (FST), and number in the open field test (OFT) were performed to measure the behavioral changes in the rats. Enzyme-linked immunosorbent assay was used to determine the levels of 5-hydroxytryptamine (5-HT) and brain-derived neurotrophic factor (BDNF) in brain tissue, and the histopathology was performed to evaluate the changes of colon tissue, together with sequencing of the V3-V4 regions of 16S rRNA gene on feces to explore the changes of intestinal flora in the rats.
RESULTS:
Compared to the control group, the rats in the model group showed notable reductions in body weight, SPF, and number in OFT (P<0.01). Hesperidin was found to ameliorate depression induced by CUMS, as seen by improvements in body weight, SPT, immobility time in FST, and number in OFT (P<0.05 or P<0.01). Regarding neurotransmitters, it was found that at a dose of 50 mg/kg hesperidin treatment upregulated the levels of 5-HT and BDNF in depressed rats (P<0.05). Compared to the control group, the colon tissue of the model group exhibited greater inflammatory cell infiltration, with markedly reduced numbers of goblet cells and crypts and were significantly improved following treatment with hesperidin. Simultaneously, the administration of hesperidin demonstrated a positive impact on the gut microbiome of rats treated with CUMS, such as Shannon index increased and Simpson index decreased (P<0.01), while the abundance of Pseudomonadota and Bacteroidota increased in the hesperidin-treated group (P<0.05).
CONCLUSION
The mechanism responsible for the beneficial effects of hesperidin on depressive behavior in rats may be related to inhibition of the expressions of BDNF and 5-HT and preservation of the gut microbiota.
Animals
;
Hesperidin/therapeutic use*
;
Rats, Sprague-Dawley
;
Depression/drug therapy*
;
Male
;
Stress, Psychological/drug therapy*
;
Brain/metabolism*
;
Brain-Derived Neurotrophic Factor/metabolism*
;
Serotonin/metabolism*
;
Gastrointestinal Microbiome/drug effects*
;
Behavior, Animal/drug effects*
;
Rats
;
Brain-Gut Axis/drug effects*
;
Chronic Disease
;
Colon/drug effects*
9.Nanomaterial-based Therapeutics for Biofilm-generated Bacterial Infections
Zhuo-Jun HE ; Yu-Ying CHEN ; Yang ZHOU ; Gui-Qin DAI ; De-Liang LIU ; Meng-De LIU ; Jian-Hui GAO ; Ze CHEN ; Jia-Yu DENG ; Guang-Yan LIANG ; Li WEI ; Peng-Fei ZHAO ; Hong-Zhou LU ; Ming-Bin ZHENG
Progress in Biochemistry and Biophysics 2024;51(7):1604-1617
Bacterial biofilms gave rise to persistent infections and multi-organ failure, thereby posing a serious threat to human health. Biofilms were formed by cross-linking of hydrophobic extracellular polymeric substances (EPS), such as proteins, polysaccharides, and eDNA, which were synthesized by bacteria themselves after adhesion and colonization on biological surfaces. They had the characteristics of dense structure, high adhesiveness and low drug permeability, and had been found in many human organs or tissues, such as the brain, heart, liver, spleen, lungs, kidneys, gastrointestinal tract, and skeleton. By releasing pro-inflammatory bacterial metabolites including endotoxins, exotoxins and interleukin, biofilms stimulated the body’s immune system to secrete inflammatory factors. These factors triggered local inflammation and chronic infections. Those were the key reason for the failure of traditional clinical drug therapy for infectious diseases.In order to cope with the increasingly severe drug-resistant infections, it was urgent to develop new therapeutic strategies for bacterial-biofilm eradication and anti-bacterial infections. Based on the nanoscale structure and biocompatible activity, nanobiomaterials had the advantages of specific targeting, intelligent delivery, high drug loading and low toxicity, which could realize efficient intervention and precise treatment of drug-resistant bacterial biofilms. This paper highlighted multiple strategies of biofilms eradication based on nanobiomaterials. For example, nanobiomaterials combined with EPS degrading enzymes could be used for targeted hydrolysis of bacterial biofilms, and effectively increased the drug enrichment within biofilms. By loading quorum sensing inhibitors, nanotechnology was also an effective strategy for eradicating bacterial biofilms and recovering the infectious symptoms. Nanobiomaterials could intervene the bacterial metabolism and break the bacterial survival homeostasis by blocking the uptake of nutrients. Moreover, energy-driven micro-nano robotics had shown excellent performance in active delivery and biofilm eradication. Micro-nano robots could penetrate physiological barriers by exogenous or endogenous driving modes such as by biological or chemical methods, ultrasound, and magnetic field, and deliver drugs to the infection sites accurately. Achieving this using conventional drugs was difficult. Overall, the paper described the biological properties and drug-resistant molecular mechanisms of bacterial biofilms, and highlighted therapeutic strategies from different perspectives by nanobiomaterials, such as dispersing bacterial mature biofilms, blocking quorum sensing, inhibiting bacterial metabolism, and energy driving penetration. In addition, we presented the key challenges still faced by nanobiomaterials in combating bacterial biofilm infections. Firstly, the dense structure of EPS caused biofilms spatial heterogeneity and metabolic heterogeneity, which created exacting requirements for the design, construction and preparation process of nanobiomaterials. Secondly, biofilm disruption carried the risk of spread and infection the pathogenic bacteria, which might lead to other infections. Finally, we emphasized the role of nanobiomaterials in the development trends and translational prospects in biofilm treatment.
10.A multicenter retrospective cohort study on the attributable risk of patients with Acinetobacter baumannii sterile body fluid infection
Lei HE ; Dao-Bin JIANG ; Ding LIU ; Xiao-Fang ZHENG ; He-Yu QIU ; Shu-Mei WU ; Xiao-Ying WU ; Jin-Lan CUI ; Shou-Jia XIE ; Qin XIA ; Li HE ; Xi-Zhao LIU ; Chang-Hui SHU ; Rong-Qin LI ; Hong-Ying TAO ; Ze-Fen CHEN
Chinese Journal of Infection Control 2024;23(1):42-48
Objective To investigate the attributable risk(AR)of Acinetobacter baumannii(AB)infection in criti-cally ill patients.Methods A multicenter retrospective cohort study was conducted among adult patients in inten-sive care unit(ICU).Patients with AB isolated from sterile body fluid and confirmed with AB infection in each cen-ter were selected as the infected group.According to the matching criteria that patients should be from the same pe-riod,in the same ICU,as well as with similar APACHE Ⅱ score(±5 points)and primary diagnosis,patients who did not infect with AB were selected as the non-infected group in a 1:2 ratio.The AR was calculated.Results The in-hospital mortality of patients with AB infection in sterile body fluid was 33.3%,and that of non-infected group was 23.1%,with no statistically significant difference between the two groups(P=0.069).The AR was 10.2%(95%CI:-2.3%-22.8%).There is no statistically significant difference in mortality between non-infected pa-tients and infected patients from whose blood,cerebrospinal fluid and other specimen sources AB were isolated(P>0.05).After infected with AB,critically ill patients with the major diagnosis of pulmonary infection had the high-est AR.There was no statistically significant difference in mortality between patients in the infected and non-infec-ted groups(P>0.05),or between other diagnostic classifications.Conclusion The prognosis of AB infection in critically ill patients is highly overestimated,but active healthcare-associated infection control for AB in the ICU should still be carried out.

Result Analysis
Print
Save
E-mail