1.Hippophae rhamnoides L.leaves extract enhances cell proliferation and neuroblast differentiation through upregulation of intrinsic factors in the dentate gyrus of the aged gerbil
Ahn Hyeon JI ; Chen Hui BAI ; Park Ha JOON ; Kim Hye IN ; Cho JEONG-HWI ; Lee JAE-CHUL ; Yan Chun BING
Chinese Medical Journal 2014;(23):4006-4011
Background Hippophae rhamnoides L.(HL) exerts antioxidant activities against various oxidative stress conditions.In this study,we investigated effects of extract from HL leaves (HLE) on cell proliferation and neuroblast differentiation in the subgranular zone (SGZ) of the dentate gyrus (DG) of aged gerbils.Methods Aged gerbils (24 months) were divided into vehicle (saline)-treated-and HLE-treated-groups.The vehicle and HLE were orally administered with 200 mg/kg once a day for 20 days before sacrifice.Cell proliferation and neurobiast differentiation were examined in the DG using Ki67 and doublecortin (DCX),respectively.We also observed changes in immunoreactivities of superoxide dismutase 1 (SOD1) and superoxide dismutase 2 (SOD2),brain-derived neurotrophic factor (BDNF),and phospho-glycogen synthase kinase-3-beta (p-GSK-3β) to examine their relation with neurogenesis using immunohistochemistry.Results The administration of HLE significantly increased the number of Ki67-positive cells and DCX-positive neuroblasts with well-developed processes in the SGZ of the DG of the HLE-treated-group.In addition,immunoreactivities of SOD1,SOD2,BDNF,and p-GSK-3β were significantly increased in granule and polymorphic cells of the DG in the HLE-treated-group compared with those in the vehicle-treated-group.Conclusions HLE treatment significantly increased cell proliferation and neuroblast differentiation,showing that immunoreactivities of SOD1,SOD2,BDNF,and p-GSK-3β were significantly increased in the DG.These indicate that increased neuroblast differentiation neurogenesis may be closely related to upregulation of SOD1,SOD2,BDNF,and p-GSK-3β in aged gerbils.
2.Accelerated and Exacerbated Effects of High Dietary Fat on Neuronal Damage Induced by Transient Cerebral Ischemia in the Gerbil Septum.
Seung Hwan CHEON ; Bing Chun YAN ; Bai Hui CHEN ; Joon Ha PARK ; Ji Hyeon AHN ; In Hye KIM ; Jae Chul LEE ; Yoo Seok PARK ; Min Joung KIM ; Yun Lyul LEE ; Jun Hwi CHO ; Moo Ho WON
Endocrinology and Metabolism 2014;29(3):328-335
BACKGROUND: Obesity induced by high-fat diet (HFD) is one of the most widespread metabolic disorders in current society. However, there has been little research regarding the effects of HFD-induced obesity in the septa of animal models of cerebral ischemia. Therefore, in the present study, we investigated septal effects of HFD on neuronal damage and gliosis induced by transient cerebral ischemia. METHODS: Body weight, blood glucose levels and serum lipid profiles levels were measured both in the normal diet (ND) and HFD-group. We also investigated the effects of ND and HFD on neuronal damage and gliosis in the septum after transient cerebral ischemia using immunohistochemistry. RESULTS: The levels of blood glucose, serum triglyceride, and total cholesterol were significantly increased in the HFD-fed gerbils compared with the ND-fed gerbils, although body weight was not significantly changed after HFD feeding. In the ND-fed gerbils, ischemia-induced neuronal damage was found in the septohippocampal nucleus (SHN) of the septum 7 days after ischemia. In the HFD-fed gerbils, ischemia-induced neuronal damage in the SHN was much more severe compared with that of the ND-fed gerbils 4 and 7 days after ischemia. In addition, we found that ischemia-induced glial activation including astrocytes and microglia was accelerated and exacerbated in the HFD-fed gerbils compared with that in the ND-fed gerbils. CONCLUSION: These results indicate that HFD can lead to much more severe effects in ischemia-induced neuronal damage/death in the septum after ischemia-reperfusion, and that it may be associated with accelerated change in glial activation.
Astrocytes
;
Blood Glucose
;
Body Weight
;
Brain Ischemia
;
Cholesterol
;
Diet
;
Diet, High-Fat
;
Dietary Fats*
;
Gerbillinae*
;
Gliosis
;
Immunohistochemistry
;
Ischemia
;
Ischemic Attack, Transient*
;
Microglia
;
Models, Animal
;
Neurons*
;
Obesity
;
Triglycerides
3.Systemic administration of low dosage of tetanus toxin decreases cell proliferation and neuroblast differentiation in the mouse hippocampal dentate gyrus.
Bing Chun YAN ; In Hye KIM ; Joon Ha PARK ; Ji Hyeon AHN ; Jeong Hwi CHO ; Bai Hui CHEN ; Jae Chul LEE ; Jung Hoon CHOI ; Ki Yeon YOO ; Choong Hyun LEE ; Jun Hwi CHO ; Jong Dai KIM ; Moo Ho WON
Laboratory Animal Research 2013;29(3):148-155
In the present study, we investigated the effect of Tetaus toxin (TeT) on cell proliferation and neuroblast differentiation using specific markers: 5-bromo-2-deoxyuridine (BrdU) as an exogenous marker for cell proliferation, Ki-67 as an endogenous marker for cell proliferation and doublecortin (DCX) as a marker for neuroblasts in the mouse hippocampal dentate gyrus (DG) after TeT treatment. Mice were intraperitoneally administered 2.5 and 10 ng/kg TeT and sacrificed 15 days after the treatment. In both the TeT-treated groups, no neuronal death occurred in any layers of the DG using neuronal nuclei (NeuN, a neuron nuclei maker) and Fluoro-Jade B (F-J B, a high-affinity fluorescent marker for the localization of neuronal degeneration). In addition, no significant change in glial activation in both the 2.5 and 10 ng/kg TeT-treated-groups was found by GFAP (a marker for astrocytes) and Iba-1 (a marker for microglia) immunohistochemistry. However, in the 2.5 ng/kg TeT-treated-group, the mean number of BrdU, Ki-67 and DCX immunoreactive cells, respectively, were apparently decreased compared to the control group, and the mean number of each in the 10 ng/kg TeT-treated-group was much more decreased. In addition, processes of DCX-immunoreactive cells, which projected into the molecular layer, were short compared to those in the control group. In brief, our present results show that low dosage (10 ng/kg) TeT treatment apparently decreased cell proliferation and neuroblast differentiation in the mouse hippocampal DG without distinct gliosis as well as any loss of adult neurons.
Adult
;
Animals
;
Bromodeoxyuridine
;
Cell Proliferation
;
Dentate Gyrus
;
Exotoxins
;
Fluoresceins
;
Gliosis
;
Humans
;
Immunohistochemistry
;
Mice
;
Neurogenesis
;
Neurons
;
Tetanus
;
Tetanus Toxin
4.Multimodal prerehabilitation for elderly patients with sarcopenia in colorectal surgery
Jingting WU ; Hannah CHI ; Shawn KOK ; Jason M.W. CHUA ; Xi-Xiao HUANG ; Shipin ZHANG ; Shimin MAH ; Li-Xin FOO ; Hui-Yee PEH ; Hui-Bing LEE ; Phoebe TAY ; Cherie TONG ; Jasmine LADLAD ; Cheryl H.M. TAN ; Nathanelle KHOO ; Darius AW ; Cheryl X.Z. CHONG ; Leonard M.L. HO ; Sharmini S. SIVARAJAH ; Jialin NG ; Winson J.H. TAN ; Fung-Joon FOO ; Bin-Tean TEH ; Frederick H. KOH
Annals of Coloproctology 2024;40(1):3-12
Sarcopenia, which is characterized by progressive and generalized loss of skeletal muscle mass and strength, has been well described to be associated with numerous poor postoperative outcomes, such as increased perioperative mortality, postoperative sepsis, prolonged length of stay, increased cost of care, decreased functional outcome, and poorer oncological outcomes in cancer surgery. Multimodal prehabilitation, as a concept that involves boosting and optimizing the preoperative condition of a patient prior to the upcoming stressors of a surgical procedure, has the purported benefits of reversing the effects of sarcopenia, shortening hospitalization, improving the rate of return to bowel activity, reducing the costs of hospitalization, and improving quality of life. This review aims to present the current literature surrounding the concept of sarcopenia, its implications pertaining to colorectal cancer and surgery, a summary of studied multimodal prehabilitation interventions, and potential future advances in the management of sarcopenia.
5.Management of Male Infertility with Coexisting Sexual Dysfunction: A Consensus Statement and Clinical Recommendations from the Asia-Pacific Society of Sexual Medicine (APSSM) and the Asian Society of Men’s Health and Aging (ASMHA)
Eric CHUNG ; Jiang HUI ; Zhong Cheng XIN ; Sae Woong KIM ; Du Geon MOON ; Yiming YUAN ; Koichi NAGAO ; Lukman HAKIM ; Hong-Chiang CHANG ; Siu King MAK ; Gede Wirya Kusuma DUARSA ; Yutian DAI ; Bing YAO ; Hwancheol SON ; William HUANG ; Haocheng LIN ; Quang NGUYEN ; Dung Ba Tien MAI ; Kwangsung PARK ; Joe LEE ; Kavirach TANTIWONGSE ; Yoshikazu SATO ; Bang-Ping JIANN ; Christopher HO ; Hyun Jun PARK
The World Journal of Men's Health 2024;42(3):471-486
Male infertility (MI) and male sexual dysfunction (MSD) can often coexist together due to various interplay factors such as psychosexual, sociocultural and relationship dynamics. The presence of each form of MSD can adversely impact male reproduction and treatment strategies will need to be individualized based on patients’ factors, local expertise, and geographical socioeconomic status. The Asia Pacific Society of Sexual Medicine (APSSM) and the Asian Society of Men’s Health and Aging (ASMHA) aim to provide a consensus statement and practical set of clinical recommendations based on current evidence to guide clinicians in the management of MI and MSD within the Asia-Pacific (AP) region. A comprehensive, narrative review of the literature was performed to identify the various forms of MSD and their association with MI. MEDLINE and EMBASE databases were searched for the following English language articles under the following terms: “low libido”, “erectile dysfunction”, “ejaculatory dysfunction”, “premature ejaculation”, “retrograde ejaculation”, “delayed ejaculation”, “anejaculation”, and “orgasmic dysfunction” between January 2001 to June 2022 with emphasis on published guidelines endorsed by various organizations. This APSSM consensus committee panel evaluated and provided evidence-based recommendations on MI and clinically relevant MSD areas using a modified Delphi method by the panel and specific emphasis on locoregional socioeconomic-cultural issues relevant to the AP region. While variations exist in treatment strategies for managing MI and MSD due to geographical expertise, locoregional resources, and sociocultural factors, the panel agreed that comprehensive fertility evaluation with a multidisciplinary management approach to each MSD domain is recommended. It is important to address individual MI issues with an emphasis on improving spermatogenesis and facilitating reproductive avenues while at the same time, managing various MSD conditions with evidence-based treatments. All therapeutic options should be discussed and implemented based on the patient’s individual needs, beliefs and preferences while incorporating locoregional expertise and available resources.
6.Hippophae rhamnoides L. leaves extract enhances cell proliferation and neuroblast differentiation through upregulation of intrinsic factors in the dentate gyrus of the aged gerbil.
Ji Hyeon AHN ; Bai Hui CHEN ; Joon Ha PARK ; In Hye KIM ; Jeong-Hwi CHO ; Jae-Chul LEE ; Bing Chun YAN ; Jung Hoon CHOI ; In Koo HWANG ; Ju-Hee PARK ; Sang-No HAN ; Yun Lyul LEE ; Myong Jo KIM ; Moo-Ho WON
Chinese Medical Journal 2014;127(23):4006-4011
BACKGROUNDHippophae rhamnoides L. (HL) exerts antioxidant activities against various oxidative stress conditions. In this study, we investigated effects of extract from HL leaves (HLE) on cell proliferation and neuroblast differentiation in the subgranular zone (SGZ) of the dentate gyrus (DG) of aged gerbils.
METHODSAged gerbils (24 months) were divided into vehicle (saline)-treated- and HLE-treated-groups. The vehicle and HLE were orally administered with 200 mg/kg once a day for 20 days before sacrifice. Cell proliferation and neuroblast differentiation were examined in the DG using Ki67 and doublecortin (DCX), respectively. We also observed changes in immunoreactivities of superoxide dismutase 1 (SOD1) and superoxide dismutase 2 (SOD2), brain-derived neurotrophic factor (BDNF), and phospho-glycogen synthase kinase-3-beta (p-GSK-3β) to examine their relation with neurogenesis using immunohistochemistry.
RESULTSThe administration of HLE significantly increased the number of Ki67-positive cells and DCX-positive neuroblasts with well-developed processes in the SGZ of the DG of the HLE-treated-group. In addition, immunoreactivities of SOD1, SOD2, BDNF, and p-GSK-3β were significantly increased in granule and polymorphic cells of the DG in the HLE-treated-group compared with those in the vehicle-treated-group.
CONCLUSIONSHLE treatment significantly increased cell proliferation and neuroblast differentiation, showing that immunoreactivities of SOD1, SOD2, BDNF, and p-GSK-3β were significantly increased in the DG. These indicate that increased neuroblast differentiation neurogenesis may be closely related to upregulation of SOD1, SOD2, BDNF, and p-GSK-3β in aged gerbils.
Animals ; Brain-Derived Neurotrophic Factor ; metabolism ; Cell Differentiation ; drug effects ; Cell Proliferation ; drug effects ; Dentate Gyrus ; drug effects ; metabolism ; Gerbillinae ; Glycogen Synthase Kinase 3 ; metabolism ; Glycogen Synthase Kinase 3 beta ; Hippophae ; drug effects ; metabolism ; Immunohistochemistry ; Intrinsic Factor ; metabolism ; Male ; Neurogenesis ; drug effects ; Superoxide Dismutase ; metabolism ; Superoxide Dismutase-1