1.4 Weeks of HIIT Modulates Metabolic Homeostasis of Hippocampal Pyruvate-lactate Axis in CUMS Rats Improving Their Depression-like Behavior
Yu-Mei HAN ; Chun-Hui BAO ; Zi-Wei ZHANG ; Jia-Ren LIANG ; Huan XIANG ; Jun-Sheng TIAN ; Shi ZHOU ; Shuang-Shuang WU
Progress in Biochemistry and Biophysics 2025;52(6):1468-1483
ObjectiveTo investigate the role of 4-week high-intensity interval training (HIIT) in modulating the metabolic homeostasis of the pyruvate-lactate axis in the hippocampus of rats with chronic unpredictable mild stress (CUMS) to improve their depressive-like behavior. MethodsForty-eight SPF-grade 8-week-old male SD rats were randomly divided into 4 groups: the normal quiet group (C), the CUMS quiet group (M), the normal exercise group (HC), and the CUMS exercise group (HM). The M and HM groups received 8 weeks of CUMS modeling, while the HC and HM groups were exposed to 4 weeks of HIIT starting from the 5th week (3 min (85%-90%) Smax+1 min (50%-55%) Smax, 3-5 cycles, Smax is the maximum movement speed). A lactate analyzer was used to detect the blood lactate concentration in the quiet state of rats in the HC and HM groups at week 4 and in the 0, 2, 4, 8, 12, and 24 h after exercise, as well as in the quiet state of rats in each group at week 8. Behavioral indexes such as sucrose preference rate, number of times of uprightness and number of traversing frames in the absenteeism experiment, and other behavioral indexes were used to assess the depressive-like behavior of the rats at week 4 and week 8. The rats were anesthetized on the next day after the behavioral test in week 8, and hippocampal tissues were taken for assay. LC-MS non-targeted metabolomics, target quantification, ELISA and Western blot were used to detect the changes in metabolite content, lactate and pyruvate concentration, the content of key metabolic enzymes in the pyruvate-lactate axis, and the protein expression levels of monocarboxylate transporters (MCTs). Results4-week HIIT intervention significantly increased the sucrose preference rate, the number of uprights and the number of traversed frames in the absent field experiment in CUMS rats; non-targeted metabolomics assay found that 21 metabolites were significantly changed in group M compared to group C, and 14 and 11 differential metabolites were significantly dialed back in the HC and HM groups, respectively, after the 4-week HIIT intervention; the quantitative results of the targeting showed that, compared to group C, lactate concentration in the hippocampal tissues of M group, compared with group C, lactate concentration in hippocampal tissue was significantly reduced and pyruvate concentration was significantly increased, and 4-week HIIT intervention significantly increased the concentration of lactate and pyruvate in hippocampal tissue of HM group; the trend of changes in blood lactate concentration was consistent with the change in lactate concentration in hippocampal tissue; compared with group C, the LDHB content of group M was significantly increased, the content of PKM2 and PDH, as well as the protein expression level of MCT2 and MCT4 were significantly reduced. The 4-week HIIT intervention upregulated the PKM2 and PDH content as well as the protein expression levels of MCT2 and MCT4 in the HM group. ConclusionThe 4-week HIIT intervention upregulated blood lactate concentration and PKM2 and PDH metabolizing enzymes in hippocampal tissues of CUMS rats, and upregulated the expression of MCT2 and MCT4 transport carrier proteins to promote central lactate uptake and utilization, which regulated metabolic homeostasis of the pyruvate-lactate axis and improved depressive-like behaviors.
2.Four Weeks of HIIT Modulates Lactate-mediated Synaptic Plasticity to Improve Depressive-like Behavior in CUMS Rats
Yu-Mei HAN ; Zi-Wei ZHANG ; Jia-Ren LIANG ; Chun-Hui BAO ; Jun-Sheng TIAN ; Shi ZHOU ; Huan XIANG ; Yong-Hong YANG
Progress in Biochemistry and Biophysics 2025;52(6):1499-1510
ObjectiveThis study aimed to investigate the effects of 4-week high-intensity interval training (HIIT) on synaptic plasticity in the prefrontal cortex (PFC) of rats exposed to chronic unpredictable mild stress (CUMS), and to explore its potential mechanisms. MethodsA total of 48 male Sprague-Dawley rats were randomly divided into 4 groups: control (C), model (M), control plus HIIT (HC), and model plus HIIT (HM). Rats in groups M and HM underwent 8 weeks of CUMS to establish depression-like behaviors, while groups HC and HM received HIIT intervention beginning from the 5th week for 4 consecutive weeks. The HIIT protocol consisted of repeated intervals of 3 min at high speed (85%-90% maximal training speed, Smax) alternated with one minute at low speed (50%-55% Smax), with 3 to 5 sets per session, conducted 5 d per week. Behavioral assessments and tail-vein blood lactate levels were measured at the end of the 4th and 8th weeks. After the intervention, rat PFC tissues were collected for Golgi staining to analyze synaptic morphology. Enzyme-linked immunosorbent assays (ELISA) were employed to detect brain-derived neurotrophic factor (BDNF), monocarboxylate transporter 1 (MCT1), lactate, and glutamate levels in the PFC, as well as serotonin (5-HT) levels in serum. Additionally, Western blot analysis was conducted to quantify the expression of synaptic plasticity-related proteins, including c-Fos, activity-regulated cytoskeleton-associated protein (Arc), and N-methyl-D-aspartate receptor 1 (NMDAR1). ResultsCompared to the control group (C), the CUMS-exposed rats (group M) exhibited significant reductions in sucrose preference rates, number of grid crossings, frequency of upright postures, and entries into and duration spent in open arms of the elevated plus maze, indicating marked depressive-like behaviors. Additionally, the group M showed significantly reduced dendritic spine density in the PFC, along with elevated levels of c-Fos, Arc, NMDAR1 protein expression, and increased concentrations of lactate and glutamate. Conversely, BDNF and MCT1 contents in the PFC and 5-HT levels in serum were significantly decreased. Following HIIT intervention, rats in the group HM displayed considerable improvement in behavioral indicators compared with the group M, accompanied by significant elevations in PFC MCT1 and lactate concentrations. Furthermore, HIIT notably normalized the expression levels of c-Fos, Arc, NMDAR1, as well as glutamate and BDNF contents in the PFC. Synaptic spine density also exhibited significant recovery. ConclusionFour weeks of HIIT intervention may alleviate depressive-like behaviors in CUMS rats by increasing lactate levels and reducing glutamate concentration in the PFC, thereby downregulating the overexpression of NMDAR, attenuating excitotoxicity, and enhancing synaptic plasticity.
3.Effect of Carbohydrate Intake Order on Metabolic Profiles of Endurance Exercise Mice in a High-temperature Environment
Huan-Yu WANG ; Guo-Dong ZHOU ; Ru-Wen WANG ; Jun QIU ; Ru WANG
Progress in Biochemistry and Biophysics 2025;52(6):1529-1543
ObjectiveThe primary objective of this study was to investigate the effects of carbohydrate intake order on post-exercise recovery and metabolic regulation under heat stress, particularly in models of exercise induced fatigue. Given the increasing significance of optimizing nutritional strategies to support performance in extreme environmental conditions, this study aimed to provide experimental evidence that contributes to a better understanding of how the sequence in which carbohydrates are consumed impacts exercise recovery, metabolic homeostasis, and fatigue alleviation in a high-temperature environment. MethodsA mouse model of exercise-induced fatigue was established under high-temperature (35°C) to simulate heat stress. The subjects were divided into 3 distinct groups based on their carbohydrate intake order: the “mixed intake” group (HOT_MIX), where all macronutrients (carbohydrates, proteins, and fats) were consumed in a balanced ratio; the “carbohydrate-first intake” group (HOT_CHO), where carbohydrates were consumed first followed by other macronutrients; the “carbohydrate-later intake” group (HOT_PRO), where proteins and fats were consumed prior to carbohydrates. Each group underwent a 7 d intervention period with daily intake according to their designated group. Exercise performance was assessed using rotarod retention time test, and biomarkers of muscle damage, such as lactate dehydrogenase (LDH), creatine kinase (CK), lactate (LD), alanine aminotransferase (ALT), and non-esterified fatty acids (NEFA), were measured. Furthermore, targeted metabolomics analyses were conducted to investigate metabolic shifts in response to different dietary strategies, and KEGG pathway enrichment analysis was employed to explore the biological mechanisms underlying these changes. ResultsThe findings demonstrated that the HOT_PRO group exhibited a significantly improved performance in the rotarod test, with a longer retention time compared to both the HOT_MIX and HOT_CHO groups (P<0.05). Additionally, this group showed significantly reduced levels of muscle damage markers such as LDH and CK, indicating that the carbohydrate-later intake strategy helped alleviate exercise-induced muscle injury. Metabolomic profiling of the HOT_PRO group showed marked increases in alanine, creatine, and flavin adenine dinucleotide (FAD), indicating shifts in amino acid metabolism and oxidative metabolism. Conversely, metabolites such as spermidine, cholesterol sulfate, cholesterol, and serine were significantly reduced in the HOT_PRO group, pointing to alterations in lipid and sterol metabolism. Further analysis of the differential metabolites revealed that these changes were primarily associated with key metabolic pathways, including glycine-serine-threonine metabolism, primary bile acid biosynthesis, taurine and hypotaurine metabolism, and steroid hormone biosynthesis. These pathways are essential for energy production, antioxidant defense, and muscle recovery, suggesting that the carbohydrate-later feeding strategy may promote metabolic homeostasis and improve exercise recovery by enhancing these critical metabolic processes. ConclusionThe results of this study support the hypothesis that consuming carbohydrates after proteins and fats during exercise recovery enhances metabolic homeostasis and accelerates recovery under heat stress. This strategy effectively modulates energy, amino acid, and lipid-related pathways, which are crucial for improving endurance performance and mitigating fatigue in high-temperature environments. The findings suggest that carbohydrate-later intake could be a promising nutritional strategy for athletes and individuals exposed to heat during physical activity. Furthermore, the study provides valuable insights into how different nutrient timing strategies can impact exercise recovery and metabolic regulation, paving the way for more personalized and effective nutritional interventions in extreme environmental conditions.
4.Analysis of Animal Models of Primary Dysmenorrhea Based on Clinical Features in Traditional Chinese and Western Medicine
Qinghua WANG ; Yu HUAN ; Shuangling ZHOU ; Ting ZUO ; Mingsan MIAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):220-226
ObjectiveTo systematically review the modeling methods and analyzes the model alignment with clinical features of primary dysmenorrhea (PD) in both traditional Chinese medicine (TCM) and western medicine, providing theoretical and practical guidance for establishing the animal models of PD that better reflect the diagnostic and therapeutic characteristics of both TCM and western medicine. MethodsThe literature on PD animal models was searched against domestic and international databases such as PubMed, CNKI, and Wanfang Data. According to the diagnostic criteria of TCM and western medicine, the modeling methods in the literature were summarized, evaluated for strengths and weaknesses, and systematically assessed for clinical concordance rates to identify suitable reference models. ResultsThe available animal models of PD showed the average clinical concordance rates of 43.64% and 61.27% with the clinical features in TCM and western medicine, respectively. Commonly used modeling methods included estrogen administration, physical stimulation, and surgical intervention, with the estrogen combined with oxytocin model and the ice-water bath model being the most studied. The model of Qi stagnation and blood stasis syndrome that was established with the comprehensive stimulation method demonstrated the highest clinical concordance rate. ConclusionCurrent PD animal models primarily replicate dysmenorrhea and simulate menstruation, but they differ from human menstruation to some extent and cannot fully reflect the pathogenesis and physiological characteristics of PD. Moreover, except the cold coagulation and dampness stagnation syndrome and Qi stagnation and blood stasis syndrome, no animal models for other TCM syndromes have been reported, which limits comprehensive TCM research on this disease to a certain extent.
5.Analysis of Animal Models of Primary Dysmenorrhea Based on Clinical Features in Traditional Chinese and Western Medicine
Qinghua WANG ; Yu HUAN ; Shuangling ZHOU ; Ting ZUO ; Mingsan MIAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):220-226
ObjectiveTo systematically review the modeling methods and analyzes the model alignment with clinical features of primary dysmenorrhea (PD) in both traditional Chinese medicine (TCM) and western medicine, providing theoretical and practical guidance for establishing the animal models of PD that better reflect the diagnostic and therapeutic characteristics of both TCM and western medicine. MethodsThe literature on PD animal models was searched against domestic and international databases such as PubMed, CNKI, and Wanfang Data. According to the diagnostic criteria of TCM and western medicine, the modeling methods in the literature were summarized, evaluated for strengths and weaknesses, and systematically assessed for clinical concordance rates to identify suitable reference models. ResultsThe available animal models of PD showed the average clinical concordance rates of 43.64% and 61.27% with the clinical features in TCM and western medicine, respectively. Commonly used modeling methods included estrogen administration, physical stimulation, and surgical intervention, with the estrogen combined with oxytocin model and the ice-water bath model being the most studied. The model of Qi stagnation and blood stasis syndrome that was established with the comprehensive stimulation method demonstrated the highest clinical concordance rate. ConclusionCurrent PD animal models primarily replicate dysmenorrhea and simulate menstruation, but they differ from human menstruation to some extent and cannot fully reflect the pathogenesis and physiological characteristics of PD. Moreover, except the cold coagulation and dampness stagnation syndrome and Qi stagnation and blood stasis syndrome, no animal models for other TCM syndromes have been reported, which limits comprehensive TCM research on this disease to a certain extent.
6.Processing technology of calcined Magnetitum based on concept of QbD and its XRD characteristic spectra.
De-Wen ZENG ; Jing-Wei ZHOU ; Tian-Xing HE ; Yu-Mei CHEN ; Huan-Huan XU ; Jian FENG ; Yue YANG ; Xin CHEN ; Jia-Liang ZOU ; Lin CHEN ; Hong-Ping CHEN ; Shi-Lin CHEN ; Yuan HU ; You-Ping LIU
China Journal of Chinese Materia Medica 2025;50(9):2391-2403
Guided by the concept of quality by design(QbD), this study optimizes the calcination and quenching process of calcined Magnetitum and establishes the XRD characteristic spectra of calcined Magnetitum, providing a scientific basis for the formulation of quality standards. Based on the processing methods and quality requirements of Magnetitum in the Chinese Pharmacopoeia, the critical process parameters(CPPs) identified were calcination temperature, calcination time, particle size, laying thickness, and the number of vinegar quenching cycles. The critical quality attributes(CQAs) included Fe mass fraction, Fe~(2+) dissolution, and surface color. The weight coefficients were determined by combining Analytic Hierarchy Process(AHP) and the criteria importance though intercrieria correlation(CRITIC) method, and the calcination process was optimized using orthogonal experimentation. Surface color was selected as a CQA, and based on the principle of color value, the surface color of calcined Magnetitum was objectively quantified. The vinegar quenching process was then optimized to determine the best processing conditions. X-ray diffraction(XRD) was used to establish the characteristic spectra of calcined Magnetitum, and methods such as similarity evaluation, cluster analysis, and orthogonal partial least squares-discriminant analysis(OPLS-DA) were used to evaluate the quality of the spectra. The optimized calcined Magnetitum preparation process was found to be calcination at 750 ℃ for 1 h, with a laying thickness of 4 cm, a particle size of 0.4-0.8 cm, and one vinegar quenching cycle(Magnetitum-vinegar ratio 10∶3), which was stable and feasible. The XRD characteristic spectra analysis method, featuring 9 common peaks as fingerprint information, was established. The average correlation coefficient ranged from 0.839 5-0.988 1, and the average angle cosine ranged from 0.914 4 to 0.995 6, indicating good similarity. Cluster analysis results showed that Magnetitum and calcined Magnetitum could be grouped together, with similar compositions. OPLS-DA discriminant analysis identified three key characteristic peaks, with Fe_2O_3 being the distinguishing component between the two. The final optimized processing method is stable and feasible, and the XRD characteristic spectra of calcined Magnetitum was initially established, providing a reference for subsequent quality control and the formulation of quality standards for calcined Magnetitum.
X-Ray Diffraction/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Quality Control
;
Particle Size
7.Mechanisms and treatment of inflammation-cancer transformation in colon from perspective of cold and heat in complexity in integrative medicine.
Ning WANG ; Han-Zhou LI ; Tian-Ze PAN ; Wei-Bo WEN ; Ya-Lin LI ; Qian-Qian WAN ; Yu-Tong JIN ; Yu-Hong BIAN ; Huan-Tian CUI
China Journal of Chinese Materia Medica 2025;50(10):2605-2618
Colorectal cancer(CRC) is one of the most common malignant tumors worldwide, primarily originating from recurrent inflammatory bowel disease(IBD). Therefore, blocking the inflammation-cancer transformation in the colon has become a focus in the early prevention and treatment of CRC. The inflammation-cancer transformation in the colon involves multiple types of cells and complex pathological processes, including inflammatory responses and tumorigenesis. In this complex pathological process, immune cells(including non-specific and specific immune cells) and non-immune cells(such as tumor cells and fibroblasts) interact with each other, collectively promoting the progression of the disease. In traditional Chinese medicine(TCM), inflammation-cancer transformation in the colon belongs to the categories of dysentery and diarrhea, with the main pathogenesis being cold and heat in complexity. This paper first elaborates on the complex molecular mechanisms involved in the inflammation-cancer transformation process in the colon from the perspectives of inflammation, cancer, and their mutual influences. Subsequently, by comparing the pathogenic characteristics and clinical manifestations between inflammation-cancer transformation and the TCM pathogenesis of cold and heat in complexity, this paper explores the intrinsic connections between the two. Furthermore, based on the correlation between inflammation-cancer transformation in the colon and the TCM pathogenesis, this paper delves into the importance of the interaction between inflammation and cancer. Finally, it summarizes and discusses the clinical and basic research progress in the TCM intervention in the inflammation-cancer transformation process, providing a theoretical basis and treatment strategy for the treatment of CRC with integrated traditional Chinese and Western medicine.
Humans
;
Colon/pathology*
;
Integrative Medicine
;
Animals
;
Cold Temperature
;
Cell Transformation, Neoplastic/drug effects*
;
Medicine, Chinese Traditional
;
Hot Temperature
;
Inflammation
;
Drugs, Chinese Herbal/therapeutic use*
;
Colonic Neoplasms/drug therapy*
8.CFAP300 loss-of-function variant causes primary ciliary dyskinesia and male infertility via disrupting sperm flagellar assembly and acrosome formation.
Hua-Yan YIN ; Yu-Qi ZHOU ; Qun-Shan SHEN ; Zi-Wen CHEN ; Jie-Ru LI ; Huan WU ; Yun-Xia CAO ; Rui GUO ; Bing SONG
Asian Journal of Andrology 2025;27(6):743-750
Primary ciliary dyskinesia (PCD) is a genetically heterogeneous disorder characterized by impaired motility of cilia and flagella. Mutations in cilia- and flagella-associated protein 300 ( CFAP300 ) are associated with human PCD and male infertility; however, the underlying pathogenic mechanisms remain poorly understood. In a consanguineous Chinese family, we identified a homozygous CFAP300 loss-of-function variant (c.304delC) in a proband presenting with classical PCD symptoms and severe sperm abnormalities, including dynein arm deficiency and acrosomal malformation, as confirmed by transmission electron microscopy (TEM). Histological analysis revealed multiple morphological abnormalities of the sperm flagella in CFAP300 -mutant individual, whereas immunofluorescence demonstrated markedly reduced CFAP300 expression in the spermatozoa of the proband. Furthermore, tandem mass tag (TMT)-based quantitative proteomics showed that the CFAP300 mutation reduced key spermatogenesis proteins (e.g., sperm flagellar 2 [SPEF2], solute carrier family 25 member 31 [SLC25A31], and A-kinase anchoring protein 3 [AKAP3]) and mitochondrial ATP synthesis factors (e.g., SLC25A31, cation channel sperm-associated 3 [CATSPER3]). It also triggered abnormal increases in autophagy-related proteins and signaling mediator phosphorylation. These molecular alterations are likely to contribute to progressive deterioration of sperm ultrastructure and function. Notably, successful pregnancy was achieved via intracytoplasmic sperm injection (ICSI) using the proband's sperm. Overall, this study expands the known CFAP300 mutational spectrum and offers novel mechanistic insights into its role in spermatogenesis.
Humans
;
Male
;
Infertility, Male/pathology*
;
Acrosome/pathology*
;
Sperm Tail/pathology*
;
Pedigree
;
Spermatozoa
;
Adult
;
Loss of Function Mutation
;
Ciliary Motility Disorders/genetics*
;
Spermatogenesis/genetics*
;
Female
9.Inhibitory Effect of Simvastatin Combined with Doxorubicin on Biological Functions of Diffuse Large B-Cell Lymphoma Cells and Its Mechanism.
Yao WANG ; Min-An ZHANG ; Huan ZHOU ; Qing-Feng XUE ; Wen-Yu SHI ; Ya-Ping ZHANG
Journal of Experimental Hematology 2025;33(1):82-92
OBJECTIVE:
To explore the effect of simvastatin monotherapy or in combination with doxorubicin on diffuse large B-cell lymphoma (DLBCL) cells and its possible molecular mechanisms.
METHODS:
The differences in the expression levels of genes and proteins related to the mevalonate (MVA) pathway between DLBCL tissues and reactive lymph node hyperplasia tissues were compared via database analysis, as well as their effects on the prognosis. CCK-8 assay was used to detect the effect of simvastatin and doxorubicin on the viability of different subtypes of DLBCL cells, EdU was used to detect cell proliferation, flow cytometry was used to detect apoptosis, and Western blot was used to detect related protein and signaling pathway proteins.
RESULTS:
The expression levels of MVA pathway-related genes were increased in tumor tissues of DLBCL patients through the TCGA database, and the median overall survival time of DLBCL patients in HMGCR high expression group was shorter (all P < 0.05). Meanwhile, according to The Human Protein Atlas database, HMGCR protein was significantly high expressed in DLBCL tumor tissue compared with normal tissue. The viability of DLBCL cell lines treated with simvastatin or doxorubicin monotherapy was decreased in time- and concentration-dependent manner, and could be further inhibited by simvastatin combined with doxorubicin especially in GCB subtype cell lines. Both simvastatin and doxorubicin could inhibit the proliferation of DLBCL cell lines, and their combination further suppressed dramatically. Both the two drugs promoted apoptosis in DLBCL cell lines, and the apoptosis was further increased after their combination. Compared with monotherapy, the expression of HMGCR protein and apoptosis-related protein Bcl-2 was further decreased but cleaved-caspase3 and Bax increased after combination therapy. Meanwhile, the expression level of phosphorylated proteins in PI3K-Akt pro-survival signaling pathway were decreased especially in GCB subtype cell lines.
CONCLUSION
HMGCR, the protein associated with cholesterol synthesis pathway, is highly expressed in DLBCL tumor tissues and indicates poor prognosis. Simvastatin, a lipid-lowering drug, combined with doxorubicin can further affect the survival of DLBCL tumor cells at the cellular level.
Humans
;
Lymphoma, Large B-Cell, Diffuse/metabolism*
;
Doxorubicin/pharmacology*
;
Simvastatin/pharmacology*
;
Apoptosis/drug effects*
;
Cell Proliferation/drug effects*
;
Signal Transduction
;
Cell Line, Tumor
;
Hydroxymethylglutaryl CoA Reductases/metabolism*
10.Prognostic Significance of Endothelial Activation and Stress Index in Mantle Cell Lymphoma.
Xin-Yue ZHOU ; Zhi-Qin YANG ; Jin HU ; Feng-Yi LU ; Qian-Nan HAN ; Huan-Huan ZHAO ; Wen-Xia GAO ; Yu-Han MA ; Hu-Jun LI ; Zhen-Yu LI ; Kai-Lin XU ; Wei CHEN
Journal of Experimental Hematology 2025;33(4):1051-1056
OBJECTIVE:
To investigate the predictive value of endothelial activation and stress index (EASIX) for the prognosis of patients with mantle cell lymphoma (MCL).
METHODS:
A retrospective analysis was conducted to assess prognosis and compare the clinical features of patients diagnosed with MCL who were admitted to the Affiliated Hospital of Xuzhou Medical University from January 2010 to June 2023, had therapeutic indications and received standard treatment.
RESULTS:
A total of 66 patients were included and divided into high EASIX group and low EASIX group, according to a cutoff value of 0.97 determined by the receiver operating characteristic (ROC) curve. Multivariate Cox regression analysis showed that prealbumin <0.2 g/L, high EASIX, and ECOG PS score ≥2 were independent risk factors influencing overall survival (OS) in MCL patients. The median OS of patients in the high and low EASIX group was 13.0 and 37.5 months, and the median progression-free survival was 8.8 and 26.0 months, respectively. The proportions of patients with ECOG PS score ≥2 and prealbumin <0.2 g/L at onset significantly increased in the high EASIX group compared to those in the low EASIX group.
CONCLUSION
At the time of initial diagnosis, EASIX can serve as an independent prognostic indicator impacting OS in patients with MCL. Furthermore, patients in the high EASIX group experience a poorer prognosis and shorter survival duration compared with those in the low EASIX group.
Humans
;
Lymphoma, Mantle-Cell/pathology*
;
Prognosis
;
Retrospective Studies
;
Male
;
Female
;
Middle Aged
;
Aged
;
ROC Curve

Result Analysis
Print
Save
E-mail