1.The Application of Spatial Resolved Metabolomics in Neurodegenerative Diseases
Lu-Tao XU ; Qian LI ; Shu-Lei HAN ; Huan CHEN ; Hong-Wei HOU ; Qing-Yuan HU
Progress in Biochemistry and Biophysics 2025;52(9):2346-2359
The pathogenesis of neurodegenerative diseases (NDDs) is fundamentally linked to complex and profound alterations in metabolic networks within the brain, which exhibit marked spatial heterogeneity. While conventional bulk metabolomics is powerful for detecting global metabolic shifts, it inherently lacks spatial resolution. This methodological limitation hampers the ability to interrogate critical metabolic dysregulation within discrete anatomical brain regions and specific cellular microenvironments, thereby constraining a deeper understanding of the core pathological mechanisms that initiate and drive NDDs. To address this critical gap, spatial metabolomics, with mass spectrometry imaging (MSI) at its core, has emerged as a transformative approach. It uniquely overcomes the limitations of bulk methods by enabling high-resolution, simultaneous detection and precise localization of hundreds to thousands of endogenous molecules—including primary metabolites, complex lipids, neurotransmitters, neuropeptides, and essential metal ions—directly in situ from tissue sections. This powerful capability offers an unprecedented spatial perspective for investigating the intricate and heterogeneous chemical landscape of NDD pathology, opening new avenues for discovery. Accordingly, this review provides a comprehensive overview of the field, beginning with a discussion of the technical features, optimal application scenarios, and current limitations of major MSI platforms. These include the widely adopted matrix-assisted laser desorption/ionization (MALDI)-MSI, the ultra-high-resolution technique of secondary ion mass spectrometry (SIMS)-MSI, and the ambient ionization method of desorption electrospray ionization (DESI)-MSI, along with other emerging technologies. We then highlight the pivotal applications of spatial metabolomics in NDD research, particularly its role in elucidating the profound chemical heterogeneity within distinct pathological microenvironments. These applications include mapping unique molecular signatures around amyloid β‑protein (Aβ) plaques, uncovering the metabolic consequences of neurofibrillary tangles composed of hyperphosphorylated tau protein, and characterizing the lipid and metabolite composition of Lewy bodies. Moreover, we examine how spatial metabolomics contributes to constructing detailed metabolic vulnerability maps across the brain, shedding light on the biochemical factors that render certain neuronal populations and anatomical regions selectively susceptible to degeneration while others remain resilient. Looking beyond current applications, we explore the immense potential of integrating spatial metabolomics with other advanced research methodologies. This includes its combination with three-dimensional brain organoid models to recapitulate disease-relevant metabolic processes, its linkage with multi-organ axis studies to investigate how systemic metabolic health influences neurodegeneration, and its convergence with single-cell and subcellular analyses to achieve unprecedented molecular resolution. In conclusion, this review not only summarizes the current state and critical role of spatial metabolomics in NDD research but also offers a forward-looking perspective on its transformative potential. We envision its continued impact in advancing our fundamental understanding of NDDs and accelerating translation into clinical practice—from the discovery of novel biomarkers for early diagnosis to the development of high-throughput drug screening platforms and the realization of precision medicine for individuals affected by these devastating disorders.
2.The Role of α7nAChR in Alzheimer’s Disease
Dao-Bo DING ; Wen-Jun MU ; Xin LI ; Huan CHEN ; Hong-Wei HOU ; Qing-Yuan HU
Progress in Biochemistry and Biophysics 2024;51(11):2897-2904
As the global population continues to age, the incidence of Alzheimer’s disease (AD), one of the most common neurodegenerative diseases, continues to rise significantly. As the disease progresses, the patient’s daily living abilities gradually decline, potentially leading to a complete loss of self-care abilities. According to estimates by the Alzheimer’s Association and the World Health Organization, AD accounts for 60%-70% of all other dementia cases, affecting over 55 million people worldwide. The case number is estimated to double by 2050. Despite extensive research, the precise etiology and pathogenesis of AD remain elusive. Researchers have a profound understanding of the disease’s pathological hallmarks, which include amyloid plaques and neurofibrillary tangles resulting from the abnormal phosphorylation of Tau protein. However, the exact causes and mechanisms of the disease are still not fully understood, leaving a vital gap in our knowledge and understanding of this debilitating disease. A crucial player that has recently emerged in the field of AD research is the α7 nicotinic acetylcholine receptor (α7nAChR). α7nAChR is composed of five identical α7 subunits that form a homopentamer. This receptor is a significant subtype of acetylcholine receptor in the central nervous system and is widely distributed in various regions of the brain. It is particularly prevalent in the hippocampus and cortical areas, which are regions associated with learning and memory. α7nAChR plays a pivotal role in several neurological processes, including neurotransmitter release, neuronal plasticity, cell signal transduction, and inflammatory response, suggesting its potential involvement in numerous neurodegenerative diseases, including AD. In recent years, the role of α7nAChR in AD has been the focus of extensive research. Emerging evidence suggests that α7nAChR is involved in several critical steps in the disease progression of AD. These include involvement in the metabolism of amyloid β-protein (Aβ), the phosphorylation of Tau protein, neuroinflammatory response, and oxidative stress. Each of these processes contributes to the development and progression of AD, and the involvement of α7nAChR in these processes suggests that it may play a crucial role in the disease’s pathogenesis. The potential significance of α7nAChR in AD is further reinforced by the observation that alterations in its function or expression can have significant effects on cognitive abilities. These findings suggest that α7nAChR could be a promising target for therapeutic intervention in AD. At present, the results of drug clinical studies targeting α7nAChR show that these compounds have improvement and therapeutic effects in AD patients, but they have not reached the degree of being widely used in clinical practice, and their drug development still faces many challenges. Therefore, more research is needed to fully understand its role and to develop effective treatments based on this understanding. This review aims to summarize the current understanding of the association between α7nAChR and AD pathogenesis. We provide an overview of the latest research developments and insights, and highlight potential avenues for future research. As we deepen our understanding of the role of α7nAChR in AD, it is hoped that this will pave the way for the development of novel therapeutic strategies for this devastating disease. By targeting α7nAChR, we may be able to develop more effective treatments for AD, ultimately improving the quality of life for patients and their families.
3.Mechanism of Cigarette Smoke-induced Injury to Alveolar Epithelial Cells
Jian-Lu TIAN ; Hong-Juan WANG ; Huan CHEN ; Hong-Wei HOU ; Qing-Yuan HU
Progress in Biochemistry and Biophysics 2024;51(9):2144-2155
Smoking is the leading preventable risk factor for disease and death worldwide. Tobacco and its smoke contain a complex mix of over 9 500 chemical substances, including oxidative gases, heavy metals, and 83 known carcinogens. Long-term smoking is a significant risk factor for respiratory diseases such as acute lung injury, emphysema, and pulmonary fibrosis. Damage to alveolar epithelial cells (AECs) is a common pathological feature in these smoking-related lung diseases. AECs, which line the surface of the alveoli, play a crucial role in preventing overexpansion or collapse, secreting cell factors and surfactants, containing abundant mitochondria, and being essential for lung tissue maturation, gas exchange, metabolism, and repair after damage. Damage to these cells can lead to pulmonary edema and alveolar collapse. Cigarette smoke (CS) can disrupt alveolar epithelial cell function through various pathways, resulting in cell death, tissue damage, and the development of lung diseases.This review summarizes recent research on the damage caused by CS to AECs, showing that CS can promote cell death and damage through induction of oxidative stress, autophagy, endoplasmic reticulum stress, mitochondrial dysfunction, inflammation, and epithelial-mesenchymal transition. It also affects the proliferative function of alveolar type II epithelial cells. The review highlights that CS-induced oxidative stress is a key factor in causing various types of damage, with TRP ion channels serving as important triggers. Inhibiting CS-induced oxidative damage can significantly prevent cell death and subsequent diseases such as pulmonary emphysema. The activation of the same pathway induced by CS can lead to different types of cell damage, potentially encouraging the development of different diseases. CS can either directly induce or indirectly promote cell inflammation through endoplasmic reticulum stress, mitochondrial dysfunction, and senescence. There are interconnected relationships between these mechanisms, and SIRT1 is an important protein in preventing CS-induced AECs damage. Increasing SIRT1 activity can alleviate CS-induced autophagy, endoplasmic reticulum stress, and senescence in various cell damages; its substrate NAD+ is already used clinically, and its effectiveness in COPD treatment deserves further exploration. The impact of CS on cells varies based on concentration: lower concentrations stimulate stress responses or apoptosis, while higher concentrations lead to apoptosis or necrosis through various mechanisms, ultimately impairing lung epithelial function. When external stimuli exceed the cells’ self-healing capacity, they can cause damage to cells, lung epithelial barriers, and alveoli, promoting the development of related lung diseases. Key proteins that play a protective role may serve as potential targets to mitigate cell damage.This review provides insights into the various mechanisms through which CS induces damage to AECs, covering important transcription factors, DNA repair proteins, and membrane channel proteins, paving the way for the study of new mechanisms and pathways. However, there are still unanswered questions, such as the need for further exploration of the upstream pathways of CS-induced autophagy in AECs and the intrinsic mechanisms of CS in enhancing the stem cell properties of AECs and its relationship to the occurrence of lung cancer.It is expected that this article will provide a theoretical basis for future research on the mechanisms of lung epithelial cell damage caused by CS or its individual components and inspire clinical strategies for the prevention and treatment of smoking-related lung diseases.
4.Effects of emetine on insulin secretion in rat islets through GLP-1R
Huan XUE ; Zhi-Hong LU ; Bin WANG ; Si-Ting YU ; Xi ZHANG ; Bin HU ; Qing-Xuan ZENG ; Yi ZHANG
Chinese Pharmacological Bulletin 2024;40(7):1267-1272
Aim To study the effect of emetine on in-sulin secretion through glucagon-like peptide-1 receptor(GLP-1R).Methods Isolating rat islets were used to carry out insulin secretion experiment.Islets were incubated with different concentrations of emetine(2,10,50 μmol·L-1),different concentrations of glu-cose solution(2.8,11.1,16.7 mmol·L-1)or spe-cific GLP-1R antagonist Exendin(9-39).The amount of insulin secretion in the supernatant of each group was determined by an enzyme-linked radioimmunoas-say.Small molecule compounds were docked to GLP-1R(PDB code:5NX2)using SYBYL-X2.0 software.Results Emetine could promote insulin secretion in high glucose(11.1 mmol·L-1)in a dose-dependent manner.In low glucose(2.8 mmol·L-1),insulin secretion did not change after intervention of emetine.But in high glucose(11.1,16.7 mmol·L-1),insu-lin secretion significantly increased under the treatment of emetine in a glucose-dependent manner.The doc-king score of emetine and GLP-1R was Total Score=6.82,C Score=5,indicating that emetine had a good binding affinity with GLP-1R.Using Exendin(9-39)to block GLP-1R,the insulinotropic effect of emetine was reduced.Conclusion Emetine could promote in-sulin secretion,which is related to the activation of GLP-1R.
5.Guanxin Danshen Dripping Pills Improve Quality of Life and Cardiovascular Prognoses of CHD Patients after PCI with Anxiety or Depression (GLAD Study): A Randomized Double-Blind Placebo-Controlled Study.
Cheng-Long WANG ; Na HUAN ; Pei-Li WANG ; Qing-Shan GENG ; Wen-Lin MA ; Li-Hong MA ; Hong-Yan JIANG ; Xiao-Ping MENG ; Da-Wu ZHANG ; Xiao-Jiang GOU ; Da-Yi HU ; Ke-Ji CHEN
Chinese journal of integrative medicine 2023;29(3):195-204
OBJECTIVE:
To assess the efficacy and safety of Guanxin Danshen Dripping Pills (GXDS) in the treatment of depression or anxiety in patients with coronary heart disease (CHD) after percutaneous coronary intervention (PCI).
METHODS:
From September 2017 to June 2019, 200 CHD patients after PCI with depression and anxiety were included and randomly divided into GXDS (100 cases) and placebo control groups (100 cases) by block randomization and a random number table. Patients in the GXDS and control groups were given GXDS and placebo, respectively, 0.4 g each time, 3 times daily for 12 weeks. The primary outcomes were scores of Patient Health Questionnaire-9 (PHQ-9), Generalized Anxiety Scale (GAD-7) and the Seattle Angina Pectoris Scale (SAQ). The secondary outcomes included 12 Health Survey Summary Form (SF-12) scores and the first onset time and incidence of major adverse cardiovascular events (MACEs). Other indices including blood pressure, blood lipids, microcirculation and inflammatory-related indices, etc. were monitored at baseline, week 4, and week 12.
RESULTS:
In the full analysis set (200 cases), after treatment, the PHQ-9 and GAD-7 scores in the GXDS group were considerably lower than those in the control group (P<0.05). Compared with the baseline, the total PHQ-9 scores of the experimental and control groups decreased by 3.97 and 1.18, respectively. The corrected mean difference between the two groups was -2.78 (95% CI: -3.47, -2.10; P<0.001). The total GAD-7 score in the GXDS group decreased by 3.48% compared with the baseline level, while that of the placebo group decreased by 1.13%. The corrected mean difference between the two groups was -2.35 (95% CI: -2.95, -1.76; P<0.001). The degree of improvement in SAQ score, SF-12 score, endothelin and high-sensitive C-reactive protein levels in the GXDS group were substantially superior than those in the placebo group, and the differences between the two groups were statistically significant (P<0.05). Similar results were obtained in the per protocol population analysis of 177 patients. Three cases of MACES were reported in this study (1 in the GXDS group and 2 in the placebo group), and no serious adverse events occurred.
CONCLUSIONS
GXDS can significantly alleviate depression and anxiety, relieve symptoms of angina, and improve quality of life in patients with CHD after PCI. (Registration No. ChiCTR1800014291).
Humans
;
Percutaneous Coronary Intervention/adverse effects*
;
Quality of Life
;
Depression
;
Coronary Disease/drug therapy*
;
Drugs, Chinese Herbal/therapeutic use*
;
Angina Pectoris/drug therapy*
;
Prognosis
;
Anxiety
;
Treatment Outcome
;
Double-Blind Method
6.Prevalence and trends of anemia among pregnant women in eight provinces of China from 2016 to 2020.
Li Na YIN ; Wei ZHAO ; Huan Qing HU ; Ai Qun HUANG ; Si Di CHEN ; Bo SONG ; Qi YANG ; Jiang Li DI
Chinese Journal of Preventive Medicine 2023;57(5):736-740
This study analyzed the anemia status and change trend of 219 835 pregnant women in eight provinces from 2016 to 2020 in the Maternal and Newborn Health Monitoring Program(MNHMP). The results showed that from 2016 to 2020, the anemia rate of pregnant women in eight provinces was 41.27%, and the rates of mild, moderate and severe anemia were 28.56%, 12.59% and 0.12% respectively; the anemia rates in eastern, central and western regions were 41.87%, 36.09% and 44.63% respectively, and the anemia rates in urban and rural areas were 39.87% and 42.23%. From 2016 to 2020, the anemia rate of pregnant women decreased from 44.93% to 38.22%, with an average annual decline of 3.86% (95%CI:-5.84%, -1.85%). The anemia rate among pregnant women of the eastern region (AAPC=-6.16%, 95%CI:-9.79%, -2.38%) fell faster than that among pregnant women of the central region (AAPC=0.71%, 95%CI:-6.59%, 8.57%) and western region (AAPC=-1.53%, 95%CI:-5.19%, 2.28%). From 2016 to 2020, the moderate anemia rate in pregnant women decreased from 14.98% to 10.74%, with an average annual decline of 8.72% (95%CI:-12.90%, -4.34%), with a statistically significant difference (P<0.05); AAPC for mild and severe anemia in pregnant women was 1.56% (95%CI: 3.44%, 0.36%) and 18.86% (95%CI: 39.88%, 9.52%), respectively, without statistically significant difference (P>0.05).
Infant, Newborn
;
Female
;
Humans
;
Pregnancy
;
Pregnant Women
;
Prevalence
;
Anemia/epidemiology*
;
China/epidemiology*
;
Family
;
Rural Population
7.Construction of the intelligence scenario for the safe and rational drug use based on massive prescription and medical advice in hospitals
Huan YAN ; Wen-Qing ZHANG ; Di XIE ; Han-Kun HU ; Dong-Fang WU
China Pharmacist 2023;26(12):527-534
Objective To discuss how to utilize intelligence application scenarios to promote the quality of hospital pharmaceutical care.Methods The literature was consulted and the needs of intelligence application scenarios in hospital pharmacy were systematically sorted out.The construction and practice of intelligence application scenarios in hospitals were introduced combining the pharmaceutical work practice of Zhongnan hospital of Wuhan University.Results Zhongnan Hospital of Wuhan University has gradually established intelligence systems covering the aspects of drug supplies,maintenance,dispensing,prescription checking,clinical pharmacy services and pharmacy management.Intelligent prescription checking and review,intelligent generation of drug procurement and supply plans,acceptance,maintenance,sorting and dispensing has realized.Informatization of the management of intensive monitoring drugs,antibiotics and anesthetic drugs were focused.In the context of scarce human resources,the supplies of drug in hospitals has been ensured,the rational rate of drug use has gradually increased,the utilization rate of antibiotics and the amount of intensive monitoring drugs have gradually decreased.Conclusion Intelligence technology saves human resources,improves the efficiency and quality of pharmaceutical management.The application of intelligence scenarios should be promoted and expanded in hospital pharmacy,and provide innovative human-computer integration pharmacy services.
8.To compare the efficacy and incidence of severe hematological adverse events of flumatinib and imatinib in patients newly diagnosed with chronic phase chronic myeloid leukemia.
Xiao Shuai ZHANG ; Bing Cheng LIU ; Xin DU ; Yan Li ZHANG ; Na XU ; Xiao Li LIU ; Wei Ming LI ; Hai LIN ; Rong LIANG ; Chun Yan CHEN ; Jian HUANG ; Yun Fan YANG ; Huan Ling ZHU ; Ling PAN ; Xiao Dong WANG ; Gui Hui LI ; Zhuo Gang LIU ; Yan Qing ZHANG ; Zhen Fang LIU ; Jian Da HU ; Chun Shui LIU ; Fei LI ; Wei YANG ; Li MENG ; Yan Qiu HAN ; Li E LIN ; Zhen Yu ZHAO ; Chuan Qing TU ; Cai Feng ZHENG ; Yan Liang BAI ; Ze Ping ZHOU ; Su Ning CHEN ; Hui Ying QIU ; Li Jie YANG ; Xiu Li SUN ; Hui SUN ; Li ZHOU ; Ze Lin LIU ; Dan Yu WANG ; Jian Xin GUO ; Li Ping PANG ; Qing Shu ZENG ; Xiao Hui SUO ; Wei Hua ZHANG ; Yuan Jun ZHENG ; Qian JIANG
Chinese Journal of Hematology 2023;44(9):728-736
Objective: To analyze and compare therapy responses, outcomes, and incidence of severe hematologic adverse events of flumatinib and imatinib in patients newly diagnosed with chronic phase chronic myeloid leukemia (CML) . Methods: Data of patients with chronic phase CML diagnosed between January 2006 and November 2022 from 76 centers, aged ≥18 years, and received initial flumatinib or imatinib therapy within 6 months after diagnosis in China were retrospectively interrogated. Propensity score matching (PSM) analysis was performed to reduce the bias of the initial TKI selection, and the therapy responses and outcomes of patients receiving initial flumatinib or imatinib therapy were compared. Results: A total of 4 833 adult patients with CML receiving initial imatinib (n=4 380) or flumatinib (n=453) therapy were included in the study. In the imatinib cohort, the median follow-up time was 54 [interquartile range (IQR), 31-85] months, and the 7-year cumulative incidences of CCyR, MMR, MR(4), and MR(4.5) were 95.2%, 88.4%, 78.3%, and 63.0%, respectively. The 7-year FFS, PFS, and OS rates were 71.8%, 93.0%, and 96.9%, respectively. With the median follow-up of 18 (IQR, 13-25) months in the flumatinib cohort, the 2-year cumulative incidences of CCyR, MMR, MR(4), and MR(4.5) were 95.4%, 86.5%, 58.4%, and 46.6%, respectively. The 2-year FFS, PFS, and OS rates were 80.1%, 95.0%, and 99.5%, respectively. The PSM analysis indicated that patients receiving initial flumatinib therapy had significantly higher cumulative incidences of CCyR, MMR, MR(4), and MR(4.5) and higher probabilities of FFS than those receiving the initial imatinib therapy (all P<0.001), whereas the PFS (P=0.230) and OS (P=0.268) were comparable between the two cohorts. The incidence of severe hematologic adverse events (grade≥Ⅲ) was comparable in the two cohorts. Conclusion: Patients receiving initial flumatinib therapy had higher cumulative incidences of therapy responses and higher probability of FFS than those receiving initial imatinib therapy, whereas the incidence of severe hematologic adverse events was comparable between the two cohorts.
Adult
;
Humans
;
Adolescent
;
Imatinib Mesylate/adverse effects*
;
Incidence
;
Antineoplastic Agents/adverse effects*
;
Retrospective Studies
;
Pyrimidines/adverse effects*
;
Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy*
;
Treatment Outcome
;
Benzamides/adverse effects*
;
Leukemia, Myeloid, Chronic-Phase/drug therapy*
;
Aminopyridines/therapeutic use*
;
Protein Kinase Inhibitors/therapeutic use*
9.A Study of Urodynamic Parameters at Different Bladder Filling Stages for Predicting Upper Urinary Tract Dilatation
Lei LYU ; Ya Xiong YAO ; Er Peng LIU ; Yan Ping ZHANG ; Hui Jie HU ; Feng Ping JI ; Qing Song PU ; Xing Huan YANG ; Qing Wei WANG ; Yan WANG ; Jian Guo WEN
International Neurourology Journal 2022;26(1):52-59
Purpose:
To identify more accurate predictors of upper urinary tract dilatation (UUTD) in neurogenic bladder (NB) children, we studied the relationship among urodynamic parameters at different bladder filling stages, detrusor leak point pressure (DLPP) and UUTD.
Methods:
A total of 158 children (3–16 years) with NB were included and then divided into 2 groups according to whether their NB diagnosis was complicated with UUTD: the UUTD group (39 patients) and those without UUTD group (control group, 119 patients). The bladder filling phase was divided into 3 equal parts: the early, middle, and end filling stages. The bladder compliance (BC) and detrusor pressure (△Pdet) at each phase and DLPP at the end filling stage were recorded.
Results:
A BC<8 mL/cm H2O both in the middle and end stages is more specific than a BC<9 mL/cm H2O in the end stage (72%, 73%, vs. 66%), and △Pdet >8 cm H2O in the early stage, 20 cm H2O in the middle stage and 25 cm H2O in the end stage are more sensitive than △Pdet >40 cm H2O in the end stage (82%, 85%, 85%, vs. 49%). A DLPP cutoff value of 20 cm H2O showed higher sensitivity for predicting UUTD than 40 cm H2O.
Conclusions
Low BC and a high △Pdet in the middle and end filling stages are more accurate factors than classic indicators for predicting UUTD. In addition, a DLPP value of >20 cm H2O in the end bladder filling stage shows high sensitivity.
10.Luteoloside protects the vascular endothelium against iron overload injury via the ROS/ADMA/DDAH II/eNOS/NO pathway.
Shu-Ping CHEN ; Tian-Hong HU ; Qing ZHOU ; Tian-Peng CHEN ; Dong YIN ; Huan HE ; Qing HUANG ; Ming HE
Chinese Journal of Natural Medicines (English Ed.) 2022;20(1):22-32
Iron overload injury is considered to be a part of blood stasis syndrome of arthralgia in traditional Chinese medicine. Its primary therapies include clearing heat and detoxification, activating blood circulation, and removing blood stasis. Lonicera japonica flos (LJF) has long been known as an excellent antipyretic and antidote. Luteoloside (Lut) is one of the main components of LJF and exhibits antioxidant, anti-inflammatory, and cytoprotective properties. However, the protection of Lut against iron overload injury and its underlying mechanisms remain unclear. Therefore, HUVECs were exposed to 50 μmol·L-1 iron dextran for 48 h to establish an iron overload damage model and the effects of Lut were assessed. Our results showed that 20 μmol·L-1 Lut not only increased cell viability and weakened LDH activity, but also significantly up-regulated DDAHⅡ expression and activity, increased p-eNOS/eNOS ratio and NO content, and reduced ADMA content in HUVECs exposed to iron overload. Furthermore, Lut significantly attenuated intracellular/mitochondrial ROS generation, improved SOD, CAT, and GSH-Px activities, reduced MDA content, maintained MMP, inhibited mPTP opening, prevented cyt c from mitochondria released into cytoplasm, reduced cleaved-caspase3 expression, and ultimately decreased cell apoptosis induced by iron overload. The effects of Lut were similar to those of L-arginine (an ADMA competitive substrate), cyclosporin A (a mPTP blocker agent), and edaravone (a free radical scavenger) as positive controls. However, addition of pAD/DDAH II-shRNA adenovirus reversed the above beneficial effects of Lut. In conclusion, Lut can protect HUVECs against iron overload injury via the ROS/ADMA/DDAH II/eNOS/NO pathway. The mitochondria are the target organelles of Lut's protective effects.
Endothelium, Vascular
;
Glucosides
;
Humans
;
Iron Overload
;
Luteolin
;
Reactive Oxygen Species

Result Analysis
Print
Save
E-mail