1.Mitochondial-located miRNAs in The Regulation of mtDNA Expression
Peng-Xiao WANG ; Le-Rong CHEN ; Zhen WANG ; Jian-Gang LONG ; Yun-Hua PENG
Progress in Biochemistry and Biophysics 2025;52(7):1649-1660
Mitochondria, functioning not only as the central hub of cellular energy metabolism but also as semi-autonomous organelles, orchestrate cellular fate decisions through their endogenous mitochondrial DNA (mtDNA), which encodes core components of the electron transport chain. Emerging research has identified microRNAs localized within mitochondria, termed mitochondria-located microRNAs (mitomiRs). Recent studies have revealed that mitomiRs are transcribed from nuclear DNA (nDNA), processed and matured in the cytoplasm, and subsequently transported into mitochondria. mitomiRs regulate mtDNA through diverse mechanisms, including modulation of mtDNA expression at the translational level and direct binding to mtDNA to influence transcription. Aberrant expression of mitomiRs leads to mitochondrial dysfunction and contributes to the pathogenesis of metabolic diseases. Restoring mitomiR expression to physiological levels using mitomiRs mimics or inhibitors has been shown to improve mitochondrial function and alleviate related diseases. Consequently, the regulatory mechanisms of mitomiRs have become a major focus in mitochondrial research. Given that mitomiRs are located in mitochondria, targeted delivery strategies designed for mtDNA can be adapted for the delivery of mitomiRs mimics or inhibitors. However, numerous intracellular and extracellular barriers remain, highlighting the need for more precise and efficient delivery systems in the future. The regulation of mtDNA expression mediated by mitomiRs not only expands our understanding of miRNA functions in post-transcriptional gene regulation but also provides promising molecular targets for the treatment of mitochondrial-related diseases. This review systematically summarizes recent research progress on mitomiRs in regulating mtDNA expression and discusses the underlying mechanisms of mitomiRs-mtDNA interactions. Additionally, it provides new perspectives on precision therapeutic strategies, with a particular emphasis on mitomiRs-based regulation of mitochondrial function in mitochondrial-related diseases.
2.The Near-infrared II Emission of Gold Clusters and Their Applications in Biomedicine
Zhen-Hua LI ; Hui-Zhen MA ; Hao WANG ; Chang-Long LIU ; Xiao-Dong ZHANG
Progress in Biochemistry and Biophysics 2025;52(8):2068-2086
Optical imaging is highly valued for its superior temporal and spatial resolution. This is particularly important in near-infrared II (NIR-II, 1 000-3 000 nm) imaging, which offers advantages such as reduced tissue absorption, minimal scattering, and low autofluorescence. These characteristics make NIR-II imaging especially suitable for deep tissue visualization, where high contrast and minimal background interference are critical for accurate diagnosis and monitoring. Currently, inorganic fluorescent probes—such as carbon nanotubes, rare earth nanoparticles, and quantum dots—offer high brightness and stability. However, they are hindered by ambiguous structures, larger sizes, and potential accumulation toxicity in vivo. In contrast, organic fluorescent probes, including small molecules and polymers, demonstrate higher biocompatibility but are limited by shorter emission wavelengths, lower quantum yields, and reduced stability. Recently, gold clusters have emerged as a promising class of nanomaterials with potential applications in biocatalysis, fluorescence sensing, biological imaging, and more. Water-soluble gold clusters are particularly attractive as fluorescent probes due to their remarkable optical properties, including strong photoluminescence, large Stokes shifts, and excellent photostability. Furthermore, their outstanding biocompatibility—attributed to good aqueous stability, ultra-small hydrodynamic size, and high renal clearance efficiency—makes them especially suitable for biomedical applications. Gold clusters hold significant potential for NIR-II fluorescence imaging. Atomic-precision gold clusters, typically composed of tens to hundreds of gold atoms and measuring only a few nanometers in diameter, possess well-defined three-dimensional structures and clear spatial coordination. This atomic-level precision enables fine-tuned structural regulation, further enhancing their fluorescence properties. Variations in cluster size, surface ligands, and alloying elements can result in distinct physicochemical characteristics. The incorporation of different atoms can modulate the atomic and electronic structures of gold clusters, while diverse ligands can influence surface polarity and steric hindrance. As such, strategies like alloying and ligand engineering are effective in enhancing both fluorescence and catalytic performance, thereby meeting a broader range of clinical needs. In recent years, gold clusters have attracted growing attention in the biomedical field. Their application in NIR-II imaging has led to significant progress in vascular, organ, and tumor imaging. The resulting high-resolution, high signal-to-noise imaging provides powerful tools for clinical diagnostics. Moreover, biologically active gold clusters can aid in drug delivery and disease diagnosis and treatment, offering new opportunities for clinical therapeutics. Despite the notable achievements in fundamental research and clinical translation, further studies are required to address challenges related to the standardized synthesis and complex metabolic behavior of gold clusters. Resolving these issues will help accelerate their clinical adoption and broaden their biomedical applications.
3.Xinyang Tablets ameliorate ventricular remodeling in heart failure via FTO/m6A signaling pathway.
Dong-Hua LIU ; Zi-Ru LI ; Si-Jing LI ; Xing-Ling HE ; Xiao-Jiao ZHANG ; Shi-Hao NI ; Wen-Jie LONG ; Hui-Li LIAO ; Zhong-Qi YANG ; Xiao-Ming DONG
China Journal of Chinese Materia Medica 2025;50(4):1075-1086
The study was conducted to investigate the mechanism of Xinyang Tablets( XYP) in modulating the fat mass and obesity-associated protein(FTO)/N6-methyladenosine(m6A) signaling pathway to ameliorate ventricular remodeling in heart failure(HF). A mouse model of HF was established by transverse aortic constriction(TAC). Mice were randomized into sham, model, XYP(low, medium, and high doses), and positive control( perindopril) groups(n= 10). From day 3 post-surgery, mice were administrated with corresponding drugs by gavage for 6 consecutive weeks. Following the treatment, echocardiography was employed to evaluate the cardiac function, and RT-qPCR was employed to determine the relative m RNA levels of key markers, including atrial natriuretic peptide( ANP), B-type natriuretic peptide( BNP), β-myosin heavy chain(β-MHC), collagen type I alpha chain(Col1α), collagen type Ⅲ alpha chain(Col3α), alpha smooth muscle actin(α-SMA), and FTO. The cardiac tissue was stained with Masson's trichrome and wheat germ agglutinin(WGA) to reveal the pathological changes. Immunohistochemistry was employed to detect the expression levels of Col1α, Col3α, α-SMA, and FTO in the myocardial tissue. The m6A modification level in the myocardial tissue was measured by the m6A assay kit. An H9c2 cell model of cardiomyocyte injury was induced by angiotensin Ⅱ(AngⅡ), and small interfering RNA(siRNA) was employed to knock down FTO expression. RT-qPCR was conducted to assess the relative m RNA levels of FTO and other genes associated with cardiac remodeling. The m6A modification level was measured by the m6A assay kit, and Western blot was employed to determine the phosphorylated phosphatidylinositol 3-kinase(p-PI3K)/phosphatidylinositol 3-kinase(PI3K) and phosphorylated serine/threonine kinase(p-Akt)/serine/threonine kinase(Akt) ratios in cardiomyocytes. The results of animal experiments showed that the XYP treatment significantly improved the cardiac function, reduced fibrosis, up-regulated the m RNA and protein levels of FTO, and lowered the m6A modification level compared with the model group. The results of cell experiments showed that the XYP-containing serum markedly up-regulated the m RNA level of FTO while decreasing the m6A modification level and the p-PI3K/PI3K and p-Akt/Akt ratios in cardiomyocytes. Furthermore, FTO knockdown reversed the protective effects of XYP-containing serum on Ang Ⅱ-induced cardiomyocyte hypertrophy. In conclusion, XYP may ameliorate ventricular remodeling by regulating the FTO/m6A axis, thereby inhibiting the activation of the PI3K/Akt signaling pathway.
Animals
;
Ventricular Remodeling/drug effects*
;
Heart Failure/physiopathology*
;
Signal Transduction/drug effects*
;
Mice
;
Male
;
Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice, Inbred C57BL
;
Humans
;
Adenosine/analogs & derivatives*
;
Myocytes, Cardiac/metabolism*
;
Disease Models, Animal
4.Digital identification of Cervi Cornu Pantotrichum based on HPLC-QTOF-MS~E and Adaboost.
Xiao-Han GUO ; Xian-Rui WANG ; Yu ZHANG ; Ming-Hua LI ; Wen-Guang JING ; Xian-Long CHENG ; Feng WEI
China Journal of Chinese Materia Medica 2025;50(5):1172-1178
Cervi Cornu Pantotrichum is a precious animal-derived Chinese medicinal material, while there are often adulterants derived from animals not specified in the Chinese Pharmacopeia in the market, which disturbs the safety of medication. This study was conducted with the aim of strengthening the quality control of Cervi Cornu Pantotrichum and standardizing the medication. To achieve digital identification of Cervi Cornu Pantotrichum from different sources, a digital identification model was constructed based on ultra-high performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry(UHPLC-QTOF-MS~E) combined with an adaptive boosting algorithm(Adaboost). The young furred antlers of sika deer, red deer, elk, and reindeer were processed and then subjected to polypeptide analysis by UHPLC-QTOF-MS~E. Then, the mass spectral data reflecting the polypeptide information were obtained by digital quantification. Next, the key data were obtained by feature screening based on Gini index, and the digital identification model was constructed by Adaboost. The model was evaluated based on the recall rate, F_1 composite score, and accuracy. Finally, the results of identification based on the constructed digital identification model were validated. The results showed that when the Gini index was used to screen the data of top 100 characteristic polypeptides, the digital identification model based on Adaboost had the best performance, with the recall rate, F_1 composite score, and accuracy not less than 0.953. The validation analysis showed that the accuracy of the identification of the 10 batches of samples was as high as 100.0%. Therefore, based on UHPLC-QTOF-MS~E and Adaboost algorithm, the digital identification of Cervi Cornu Pantotrichum can be realized efficiently and accurately, which can provide reference for the quality control and original animal identification of Cervi Cornu Pantotrichum.
Animals
;
Algorithms
;
Antlers/chemistry*
;
Boosting Machine Learning Algorithms
;
Chromatography, High Pressure Liquid/methods*
;
Deer
;
Drugs, Chinese Herbal/chemistry*
;
Mass Spectrometry/methods*
;
Quality Control
;
Reindeer
;
Tandem Mass Spectrometry/methods*
;
Tissue Extracts/analysis*
5.Efficacy and mechanism of Guizhi Tongluo Tablets in alleviating atherosclerosis by inhibiting CD72hi macrophages.
Xing-Ling HE ; Si-Jing LI ; Zi-Ru LI ; Dong-Hua LIU ; Xiao-Jiao ZHANG ; Huan HE ; Xiao-Ming DONG ; Wen-Jie LONG ; Wei-Wei ZHANG ; Hui-Li LIAO ; Lu LU ; Zhong-Qi YANG ; Shi-Hao NI
China Journal of Chinese Materia Medica 2025;50(5):1298-1309
This study investigates the effect and underlying mechanism of Guizhi Tongluo Tablets(GZTL) in treating atherosclerosis(AS) in a mouse model. Apolipoprotein E-knockout(ApoE~(-/-)) mice were randomly assigned to the following groups: model, high-, medium-, and low-dose GZTL, and atorvastatin(ATV), and age-matched C57BL/6J mice were selected as the control group. ApoE~(-/-) mice in other groups except the control group were fed with a high-fat diet for the modeling of AS and administrated with corresponding drugs via gavage for 8 weeks. General conditions, signs of blood stasis, and body mass of mice were monitored. Aortic plaques and their stability were assessed by hematoxylin-eosin, Masson, and oil red O staining. Serum levels of total cholesterol(TC), triglycerides(TG), and low-density lipoprotein cholesterol(LDL-C) were measured by biochemical assays, and those of interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), and interleukin-6(IL-6) were determined via enzyme-linked immunosorbent assay. Apoptosis was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling(TUNEL). Single-cell RNA sequencing(scRNA-seq) was employed to analyze the differential expression of CD72hi macrophages(CD72hi-Mφ) in the aortas of AS patients and mice. The immunofluorescence assay was employed to visualize CD72hi-Mφ expression in mouse aortic plaques, and real-time fluorescence quantitative PCR was utilized to determine the mRNA levels of IL-1β, TNF-α, and IL-6 in the aorta. The results demonstrated that compared with the control group, the model group exhibited significant increases in body mass, aortic plaque area proportion, necrotic core area proportion, and lipid deposition, a notable decrease in collagen fiber content, and an increase in apoptosis. Additionally, the model group showcased elevated serum levels of TC, TG, LDL-C, IL-1β, TNF-α, and IL-6, alongside marked upregulations in the mRNA levels of IL-1β, TNF-α, and IL-6 in the aorta. In comparison with the model group, the GZTL groups and the ATV group showed a reduction in body mass, and the medium-and high-dose GZTL groups and the ATV group demonstrated reductions in aortic plaque area proportion, necrotic core area proportion, and lipid deposition, an increase in collagen fiber content, and a decrease in apoptosis. Furthermore, the treatment goups showcased lowered serum levels of TC, TG, LDL-C, IL-1β, TNF-α, and IL-6. The data of scRNA-seq revealed significantly elevated CD72hi-Mφ signaling in carotid plaques of AS patients compared with that in the normal arterial tissue. Animal experiments confirmed that CD72hi-Mφ expression, along with several pro-inflammatory cytokines, was significantly upregulated in the aortas of AS mice, which were downregulated by GZTL treatment. In conclusion, GZTL may alleviate AS by inhibiting CD72hi-Mφ activity.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Atherosclerosis/immunology*
;
Mice
;
Mice, Inbred C57BL
;
Macrophages/immunology*
;
Male
;
Humans
;
Apolipoproteins E/genetics*
;
Tablets
;
Tumor Necrosis Factor-alpha/genetics*
;
Apoptosis/drug effects*
;
Interleukin-1beta/genetics*
;
Interleukin-6/genetics*
;
Disease Models, Animal
;
Mice, Knockout
6.Research progress on interactions between medicinal plants and microorganisms.
Er-Jun WANG ; Ya-Long ZHANG ; Xiao-Hui MA ; Hua-Qian GONG ; Shao-Yang XI ; Gao-Sen ZHANG ; Ling JIN
China Journal of Chinese Materia Medica 2025;50(12):3267-3280
The interactions between microorganisms and medicinal plants are crucial to the quality improvement of medicinal plants. Medicinal plants attract microorganisms to colonize by secreting specific compounds and provide niche and nutrient support for these microorganisms, with a symbiotic network formed. These microorganisms grow in the rhizosphere, phyllosphere, and endophytic tissues of plants and significantly improve the growth performance and medicinal component accumulation of medicinal plants by promoting nutrient uptake, enhancing disease resistance, and regulating the synthesis of secondary metabolites. Microorganisms are also widely used in the ecological planting of medicinal plants, and the growth conditions of medicinal plants are optimized by simulating the microbial effects in the natural environment. The interactions between microorganisms and medicinal plants not only significantly improve the yield and quality of medicinal plants but also enhance their geoherbalism, which is in line with the concept of green agriculture and eco-friendly development. This study reviewed the research results on the interactions between medicinal plants and microorganisms in recent years and focused on the analysis of the great potential of microorganisms in optimizing the growth environment of medicinal plants, regulating the accumulation of secondary metabolites, inducing systemic resistance, and promoting the ecological planting of medicinal plants. It provides a scientific basis for the research on the interactions between medicinal plants and microorganisms, the research and development of microbial agents, and the application of microorganisms in the ecological planting of medicinal plants and is of great significance for the quality improvement of medicinal plants and the green and sustainable development of TCM resources.
Plants, Medicinal/metabolism*
;
Bacteria/genetics*
;
Symbiosis
7.Mechanism of Yiguanjian in regulating Th17/Treg balance for treating dry eye in rats.
Xiao-Long ZHANG ; Yuan ZHONG ; Qing-Hua PENG ; Jun PENG
China Journal of Chinese Materia Medica 2025;50(16):4668-4678
This study investigated the therapeutic effects of Yiguanjian on dry eye in rats and its mechanisms involving the T helper cell 17(Th17)/regulatory T cell(Treg) balance. The rat model of dry eye was established by administrating 0.2% benzalkonium chloride solution in eye drops. After successful modeling, the rats were treated with Yiguanjian for 4 consecutive weeks. The Schirmer test was carried out to assess the lacrimal gland function, corneal fluorescence staining to detect corneal injury, hematoxylin-eosin staining to observe corneal histopathology, enzyme-linked immunosorbent assay to measure serum levels of interleukin(IL)-6, IL-8, IL-17A, IL-21, and tumor necrosis factor-α(TNF-α), RT-qPCR to analyze mRNA levels of retinoic acid receptor-related orphan receptor gamma t(RORγt) and forkhead box protein p3(Foxp3) in the corneal tissue, immunofluorescence double staining to evaluate RORγt and Foxp3 expression in the lacrimal gland tissue, and Western blot to quantify the protein levels of signal transducer and activator of transcription 3(STAT3), phosphorylated STAT3(p-STAT3), Janus kinase 2(Jak2), phosphorylated Jak2(p-Jak2), RORγt, and Foxp3 in the corneal tissue. The results demonstrated that Yiguanjian increased tear secretion(P<0.01), alleviated corneal damage and pathological changes, and lowered the serum levels of IL-6, IL-8, IL-17A, IL-21, and TNF-α(P<0.05) in model rats. Additionally, Yiguanjian decreased the ratio of RORγt to Foxp3 in the corneal and lacrimal gland tissue(P<0.01), downregulated the protein levels of STAT3, Jak2, and RORγt(P<0.05), upregulated the protein level of Foxp3(P<0.05), and inhibited phosphorylation of STAT3 and Jak2(P<0.01). These findings indicate that Yiguanjian ameliorates ocular surface dysfunction in dry eye rats by restoring Th17/Treg balance in the corneal and lacrimal gland tissue and suppressing systemic inflammatory cytokine release, thus mitigating ocular surface inflammation.
Animals
;
Rats
;
T-Lymphocytes, Regulatory/immunology*
;
Drugs, Chinese Herbal/administration & dosage*
;
Th17 Cells/immunology*
;
Male
;
Rats, Sprague-Dawley
;
Dry Eye Syndromes/genetics*
;
Nuclear Receptor Subfamily 1, Group F, Member 3/immunology*
;
Lacrimal Apparatus/immunology*
;
Humans
;
STAT3 Transcription Factor/immunology*
9.Clinical efficacy of tibial transverse transport with debridement for the treatment of 31 patients with necrotizing fasciitis of the lower extremities.
Da-Peng YU ; Xiao-Chong ZOU ; Xu-Bo LONG ; Xin-Yu NIE ; Qi-Kai HUA
China Journal of Orthopaedics and Traumatology 2025;38(9):945-950
OBJECTIVE:
To explore clinical efficacy of tibial transverse transport (TTT) combined with debridement in treating necrotizing fasciitis of the lower extremities.
METHODS:
A retrospective analysis was conducted on 31 patients with necrotizing fasciitis of the lower extremities who were treated with TTT from January 2021 to October 2023, including 28 males and 3 females, aged from 44 to 76 years old with an average of (57.58±8.79) years old. In-hospital mortality rate, amputation rate, length of hospital stay, hospitalization cost, number of surgeries, and inflammatory indicators before and after operation (white blood cells, hemoglobin, C-reactive protein, albumin), as well as wound healing and daily living ability were observed and compared.
RESULTS:
All 31 patients were followed up for 3 to 12 months with an average of (6.61±2.46) months. All patients' wounds healed without recurrence. The wound healing time was (4.96±2.61) months, amputation rate of 31 patients was 3.22% (1/31), in-hospital mortality rate was 0%, the length of hospital stay was (27.10±24.51) days, the hospitalization cost was (107, 300 ± 83, 300) yuan, and the number of surgeries was (3.26±1.93) times. White blood cells, C-reactive protein and albumin before operation were (13.41±5.54) ×109/L, (136.67±73.50) mg·L-1 and (25.92±5.59) g·L-11 respectively, and improved to (11.05±3.65) ×109/L, (79.91±51.40) mg·L-1, and (30.31±4.02) g·L-1 at 2 weeks after operation, and the differences were statistically significant (P<0.05);there was no statistically significant difference in hemoglobin before and after operation (P>0.05). At the latest follow-up, 16 patients were able to take care of themselves, 12 patients were partially self-sufficient, and 3 patients were completely unable to take care of themselves.
CONCLUSION
TTT with debridement could achieve satisfactory clinical efficacy in treating necrotizing fasciitis of the lower extremities.
Humans
;
Male
;
Female
;
Middle Aged
;
Aged
;
Adult
;
Fasciitis, Necrotizing/mortality*
;
Retrospective Studies
;
Debridement
;
Lower Extremity/surgery*
;
Tibia/surgery*
10.Effectiveness of Xuanshen Yishen Decoction on Intensive Blood Pressure Control: Emulation of a Randomized Target Trial Using Real-World Data.
Xiao-Jie WANG ; Yuan-Long HU ; Jia-Ming HUAN ; Shi-Bing LIANG ; Lai-Yun XIN ; Feng JIANG ; Zhen HUA ; Zhen-Yuan WANG ; Ling-Hui KONG ; Qi-Biao WU ; Yun-Lun LI
Chinese journal of integrative medicine 2025;31(8):677-684
OBJECTIVE:
To investigate the effectiveness of Xuanshen Yishen Decoction (XYD) in the treatment of hypertension.
METHODS:
Hospital electronic medical records from 2019-2023 were utilized to emulate a randomized pragmatic clinical trial. Hypertensive participants were eligible if they were aged ⩾40 years with baseline systolic blood pressure (BP) ⩾140 mm Hg. Patients treated with XYD plus antihypertensive regimen were assigned to the treatment group, whereas those who followed only antihypertensive regimen were assigned to the control group. The primary outcome assessed was the attainment rate of intensive BP control at discharge, with the secondary outcome focusing on the 6-month all-cause readmission rate.
RESULTS:
The study included 3,302 patients, comprising 2,943 individuals in the control group and 359 in the treatment group. Compared with the control group, a higher proportion in the treatment group achieved the target BP for intensive BP control [8.09% vs. 17.5%; odds ratio (OR)=2.29, 95% confidence interval (CI)=1.68 to 3.13; P<0.001], particularly in individuals with high homocysteine levels (OR=3.13; 95% CI=1.72 to 5.71; P<0.001; P for interaction=0.041). Furthermore, the 6-month all-cause readmission rate in the treatment group was lower than in the control group (hazard ratio=0.58; 95% CI=0.36 to 0.91; P=0.019), and the robustness of the results was confirmed by sensitivity analyse.
CONCLUSIONS
XYD could be a complementary therapy for intensive BP control. Our study offers real-world evidence and guides the choice of complementary and alternative therapies. (Registration No. ChiCTR2400086589).
Adult
;
Aged
;
Female
;
Humans
;
Male
;
Middle Aged
;
Antihypertensive Agents/pharmacology*
;
Blood Pressure/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Hypertension/physiopathology*
;
Patient Readmission
;
Treatment Outcome

Result Analysis
Print
Save
E-mail