1.Identification of novel pathogenic variants in genes related to pancreatic β cell function: A multi-center study in Chinese with young-onset diabetes.
Fan YU ; Yinfang TU ; Yanfang ZHANG ; Tianwei GU ; Haoyong YU ; Xiangyu MENG ; Si CHEN ; Fengjing LIU ; Ke HUANG ; Tianhao BA ; Siqian GONG ; Danfeng PENG ; Dandan YAN ; Xiangnan FANG ; Tongyu WANG ; Yang HUA ; Xianghui CHEN ; Hongli CHEN ; Jie XU ; Rong ZHANG ; Linong JI ; Yan BI ; Xueyao HAN ; Hong ZHANG ; Cheng HU
Chinese Medical Journal 2025;138(9):1129-1131
2.Mechanism of Huanglian Jiedu Decoction in treatment of type 2 diabetes mellitus based on intestinal flora.
Xue HAN ; Qiu-Mei TANG ; Wei WANG ; Guang-Yong YANG ; Wei-Yi TIAN ; Wen-Jia WANG ; Ping WANG ; Xiao-Hua TU ; Guang-Zhi HE
China Journal of Chinese Materia Medica 2025;50(1):197-208
The effect of Huanglian Jiedu Decoction on the intestinal flora of type 2 diabetes mellitus(T2DM) was investigated using 16S rRNA sequencing technology. Sixty rats were randomly divided into a normal group(10 rats) and a modeling group(50 rats). After one week of adaptive feeding, a high-fat diet + streptozotocin was given for modeling, and fasting blood glucose >16.7 mmol·L~(-1) was considered a sign of successful modeling. The modeling group was randomly divided into the model group, high-, medium-, and low-dose groups of Huanglian Jiedu Decoction, and metformin group. After seven days of intragastric treatment, the feces, colon, and pancreatic tissue of each group of rats were collected, and the pathological changes of the colon and pancreatic tissue of each group were observed by hematoxylin-eosin staining. The changes in the intestinal flora structure of each group were observed by the 16S rRNA sequencing method. The results showed that compared with the model group, the high-, medium-, and low-dose of Huanglian Jiedu Decoction reduced fasting blood glucose levels to different degrees and showed no significant changes in body weight. The number of islet cells increased, and intestinal mucosal damage attenuated. Alpha diversity analysis revealed that Huanglian Jiedu Decoction reduced the abundance and diversity of intestinal flora in rats with T2DM; at the phylum level, low-and mediam-dose of Huanglian Jiedu Decoction reduced the abundance of Bacteroidota, Proteobacteria, and Desulfobacterota and increased the abundance of Firmicute and Bacteroidota/Firmicutes, while the high-dose of Huanglian Jiedu Decoction increased the relative abundance of Proteobacteria and Bacteroidota/Firmicutes ratio, and decreaseal the relative; abundance of Firmicute; at the genus level, Huanglian Jiedu Decoction increased the relative abundance of Allobaculum, Blautia, and Lactobacillus; LEfse analysis revealed that the biomarker of low-and medium-dose groups of Huanglian Jiedu Decoction was Lactobacillus, and the structure of the intestinal flora of the low-dose group of Huanglian Jiedu Decoction was highly similar to that of the metformin group. PICRUSt2 function prediction revealed that Huanglian Jiedu Decoction mainly affected carbohydrate and amino acid metabolic pathways. It suggested that Huanglian Jiedu Decoction could reduce fasting blood glucose and increase the number of islet cells in rats with T2DM, and its mechanism of action may be related to increasing the abundance of short-chain fatty acid-producing strains and Lactobacillus and affecting carbohydrate and amino acid metabolic pathways.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Diabetes Mellitus, Type 2/metabolism*
;
Gastrointestinal Microbiome/drug effects*
;
Rats
;
Male
;
Rats, Sprague-Dawley
;
Humans
;
Bacteria/drug effects*
;
Blood Glucose/metabolism*
3.Two new protoberberine alkaloids from Stephania hernandifolia.
Wei-Hua DAI ; Xin-Tao CUI ; Yu-Jiao TU ; Lei JIANG ; Lin YUAN
China Journal of Chinese Materia Medica 2025;50(5):1231-1235
The 95% ethanol extract of Stephania hernandifolia was isolated and purified by column chromatography on silica gel and Sephadex LH-20, RP-18 medium-pressure liquid chromatography, and semi-preparative high performance liquid chromatography. The chemical structures of the compounds were identified by NMR and high-resolution mass spectrometry. Four alkaloids were isolated and identified as(-)-8-oxo-2,3,4,10,11-pentamethoxyberberine(1),(-)-8-oxo-11-hydroxy-2,3,4,10-tetramethoxyberberine(2), N-trans-feruloyl tyramine(3), and N-cis-feruloyl tyramine(4). Compounds 1 and 2 were new protoberberine alkaloids, while compounds 3 and 4 were amide alkaloids. All the four compounds were separated from this plant for the first time. The inhibitory activities of compounds 1, 3, and 4 against α-glycosidase were measured by the enzymatic reaction in vitro with 4-nitrophenyl-α-D-glucopyranoside(PNPG) as the substrate. Compounds 3 and 4 showed inhibitory activities against α-glucosidase, with median inhibition concentration(IC_(50)) values of(7.09±0.42) and(31.25±1.14) μmol·L~(-1), respectively.
Berberine Alkaloids/isolation & purification*
;
Stephania/chemistry*
;
Drugs, Chinese Herbal/isolation & purification*
;
Molecular Structure
;
alpha-Glucosidases/metabolism*
;
Chromatography, High Pressure Liquid
;
Alkaloids/isolation & purification*
4.Integrated multiomics reveal mechanism of Aidi Injection in attenuating doxorubicin-induced cardiotoxicity.
Yan-Li WANG ; Yu-Jie TU ; Jian-Hua ZHU ; Lin ZHENG ; Yong HUANG ; Jia SUN ; Yong-Jun LI ; Jie PAN ; Chun-Hua LIU ; Yuan LU
China Journal of Chinese Materia Medica 2025;50(8):2245-2259
The combination of Aidi Injection(ADI) and doxorubicin(DOX) is a common strategy in the treatment of cancer, which can achieve synergistic anti-tumor effects while attenuating the cardiotoxicity caused by DOX. This study aims to investigate the mechanism of ADI in attenuating DOX-induced cardiotoxicity by multi-omics. DOX was used to induce cardiotoxicity in mice, and the cardioprotective effects of ADI were evaluated based on biochemical indicators and pathological changes. Based on the results, transcriptomics, proteomics, and metabolomics were employed to analyze the changes of endogenous substances in different physiological states. Furthermore, data from multiple omics were integrated to screen key regulatory pathways by which ADI attenuated DOX-induced cardiotoxicity, and important target proteins were selected for measurement by ELISA kits and immunohistochemical analysis. The results showed that ADI significantly reduced the levels of cardiac troponin T(cTnT) and N-terminal pro-B-type natriuretic peptide(NT-proBNP) and effectively ameliorated myocardial fibrosis and intracellular vacuolization, indicating that ADI showed therapeutic effect on DOX-induced cardiotoxicity. The transcriptomics analysis screened out a total of 400 differentially expressed genes(DEGs), which were mainly enriched in inflammatory response, oxidative stress, and myocardial fibrosis. After proteomics analysis, 70 differentially expressed proteins were selected, which were mainly enriched in the inflammatory response, cardiac function, and energy metabolism. A total of 51 differentially expressed metabolites were screened by the metabolomics analysis, and they were mainly enriched in multiple signaling pathways, including the inflammatory response, lipid metabolism, and energy metabolism. The integrated data of multiple omics showed that linoleic acid metabolism, arachidonic acid metabolism, and glycerophosphate metabolism pathways played an important role in DOX-induced cardiotoxicity, and ADI may exert therapeutic effects by modulating these pathways. Target validation experiments suggested that ADI significantly regulated abnormal protein levels of cyclooxygenase-1(COX-1), cyclooxygenase-2(COX-2), prostaglandin H2(PGH2), and prostaglandin D2(PGD2) in the model group. In conclusion, ADI may attenuate DOX-induced cardiotoxicity by regulating linoleic acid metabolism, arachidonic acid metabolism, and glycerophosphate metabolism, thus alleviating inflammation of the body.
Doxorubicin/toxicity*
;
Animals
;
Mice
;
Cardiotoxicity/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Proteomics
;
Metabolomics
;
Injections
;
Humans
;
Multiomics
5.Evaluation of potential suitable habitats for Gastrodia elata in China under future climate and land use change scenarios.
Hua-Qian GONG ; Xu-Dong GUO ; Shao-Yang XI ; Gong-Han TU ; Fei CHEN ; Ling JIN
China Journal of Chinese Materia Medica 2025;50(14):3887-3897
Climate and land use changes may significantly impact the habitat distribution of Gastrodia elata, an endangered traditional medicinal plant. Accurately predicting its future potential suitable habitats is crucial for its conservation and sustainable development. This study integrates current distribution data of G. elata with 56 environmental variables and uses the MaxEnt model to predict changes in its suitable habitats under current climate conditions and four future climate scenarios(SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5). The results show that October precipitation and December minimum temperature are key environmental factors influencing its distribution. Under the current climate, optimal habitats for G. elata are concentrated in montane forest areas in Sichuan, Yunnan, Guizhou, and Hubei, which meet the species' requirements for understory growth. Across all future scenarios, the suitable habitat of G. elata consistently shows a stable northward shift, with a steady increase in suitable areas, extending to the middle and lower reaches of the Yangtze River and the Huang-Huai region, and even expanding into Liaoning, Jilin, and southern Heilongjiang. Land use analysis, taking into account the protection of arable land and the utilization of forest resources, indicates that by 2100, under future climate conditions, arable land in medium-to high-suitability areas is expected to increase by 30%-124%. While the conversion of non-suitable forest land into suitable habitats is projected to increase by 5%-52%, the growth of medium-to high-suitability areas within forests is relatively modest, ranging from 1% to 24%. These findings highlight the need to balance agricultural expansion with forest resource conservation to ensure the long-term sustainability of G. elata and provide scientific guidance for future suitable habitat management.
Ecosystem
;
China
;
Climate Change
;
Gastrodia/growth & development*
;
Conservation of Natural Resources
;
Plants, Medicinal/growth & development*
6.Mechanisms of puerarin-mediated lipid modulation to enhance glucose-lowering effects via hepatic ChREBP/PPARα/PPARγ in vitro.
Can CUI ; Han-Yue XIAO ; Li-Ke YAN ; Zhong-Hua XU ; Wei-Hua LIU ; Hui-Ping LI ; Jun TU
China Journal of Chinese Materia Medica 2025;50(14):3951-3961
This study aims to investigate the in vitro mechanisms underlying the beneficial effects of puerarin on hepatic insulin resistance(IR) based on the carbohydrate response element-binding protein(ChREBP)/peroxisome proliferator-activated receptor(PPAR)α/PPARγ axis involved in glucose and lipid metabolism. An IR-HepG2 cell model was established by treating cells with dexamethasone for 48 h, and the cells were then treated with 10, 20, and 40 μmol·L~(-1) puerarin for 24 h. Glucose levels and output in the extracellular fluid were measured by the glucose oxidase method, while cell viability was assessed by the cell counting kit-8(CCK-8) assay. The adenosine triphosphate(ATP) content and glycogen synthesis were evaluated through chemiluminescence and periodic acid-Schiff staining, respectively. Western blot was employed to quantify the protein levels of forkhead box protein O1(FoxO1), phosphorylated forkhead box protein O1 [p-FoxO1(Ser256)], glucagon, phosphofructokinase, liver type(PFKL), pyruvate kinase L-R(PKLR), pyruvate dehydrogenase complex 1(PDHA1), insulin receptor substrate 2(IRS2), phosphatidylinositol 3-kinase p85(PI3KR1), phosphorylated protein kinase B [p-Akt(Thr308)], glycogen synthase(GYS), glycogen phosphorylase, liver type(PYGL), adiponectin(ADPN), ChREBP, PPARα, and PPARγ. Additionally, the protein levels of acetyl-CoA carboxylase 1(ACC1), phosphorylated ATP citrate lyase [p-ACLY(Ser455)], sterol regulatory element binding protein 1c(SREBP-1c), peroxisome proliferator-activated receptor gamma coactivator 1α(PGC1α), carnitine palmitoyltransferase 1α(CPT1α), and glucagon receptor(GCGR) were also determined. Immunofluorescence was employed to visualize the expression and nuclear location of ChREBP/PPARα/PPARγ. Furthermore, quantitative PCR with the antagonists GW6471 and GW9662 was employed to assess Pparα, Pparγ, and Chrebp. The findings indicated that puerarin effectively reduced both the glucose level and glucose output in the extracellular fluid of IR-HepG2 cells without obvious effect on the cell viability, and it increased intracellular glycogen and ATP levels. Puerarin down-regulated the protein levels of FoxO1 and glucagon while up-regulating the protein levels of p-FoxO1(Ser256), PFKL, PKLR, PDHA1, IRS2, PI3KR1, p-Akt(Thr308), GYS, PYGL, ADPN, ACC1, SREBP-1c, p-ACLY(Ser455), PGC1α, CPT1α, and GCGR in IR-HepG2 cells. Furthermore, puerarin up-regulated both the mRNA and protein levels of ChREBP, PPARα, and PPARγ and promoted the translocation into the nucleus. GW6471 was observed to down-regulate the expression of Pparα while up-regulating the expression of Chrebp and Pparγ. GW9662 down-regulated the expression of Pparγ while up-regulating the expression of Pparα, with no significant effect on Chrebp. In summary, puerarin activated the hepatic ChREBP/PPARα/PPARγ axis, thereby coordinating the glucose and lipid metabolism, promoting the conversion of glucose to lipids to exert the blood glucose-lowering effect.
Isoflavones/pharmacology*
;
Humans
;
PPAR gamma/genetics*
;
Hep G2 Cells
;
Glucose/metabolism*
;
Lipid Metabolism/drug effects*
;
PPAR alpha/genetics*
;
Liver/drug effects*
;
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics*
;
Insulin Resistance
7.Hypoglycemic effect and mechanism of berberine in vitro based on regulation of BMAL1:CLOCK complex involved in hepatic glycolysis, glucose oxidation a nd gluconeogenesis to improve energy metabolism.
Zhong-Hua XU ; Li-Ke YAN ; Wei-Hua LIU ; Can CUI ; Han-Yue XIAO ; Hui-Ping LI ; Jun TU
China Journal of Chinese Materia Medica 2025;50(15):4293-4303
This paper aims to investigate the hypoglycemic effect and mechanism of berberine in improving energy metabolism based on the multi-pathway regulation of brain and muscle aromatic hydrocarbon receptor nuclear translocal protein 1(BMAL1): cyclin kaput complex of day-night spontaneous output cyclin kaput(CLOCK). The dexamethasone-induced hepatic insulin resistance(IR) HepG2 cell model was used; 0.5, 1, 5, 10, 20 μmol·L~(-1) berberine were administered at 15, 18, 21, 24, 30, 36 h. The time-dose effect of glucose content in extracellular fluid was detected by glucose oxidase method. The optimal dosage and time of berberine were determined for the follow-up study. Glucose oxidase method and chemiluminescence method were respectively performed to detect hepatic glucose output and relative content of ATP in cells; Ca~(2+), reactive oxygen species(ROS), mitochondrial structure and membrane potential were detected by fluorescent probes. Moreover, ultraviolet colorimetry method was used to detect the liver type of pyruvate kinase(L-PK) and phosphoenol pyruvate carboxykinase(PEPCK). In addition, pyruvate dehydrogenase E1 subunit α1(PDHA1), phosphate fructocrine-liver type(PFKL), forkhead box protein O1(FoxO1), peroxisome proliferator-activated receptor gamma co-activator 1α(PGC1α), glucose-6-phosphatase(G6Pase), glucagon, phosphorylated nuclear factor-red blood cell 2-related factor 2(p-Nrf2)(Ser40), heme oxygenase 1(HO-1), NAD(P)H quinone oxidoreductase 1(NQO1), fibroblast growth factor 21(FGF21), uncoupled protein(UCP) 1 and UCP2 were detected by Western blot. BMAL1:CLOCK complex was detected by immunofluorescence double-staining method, combined with small molecule inhibitor CLK8. Western blot was used to detect PDHA1, PFKL, FoxO1, PGC1α, G6Pase, glucagon, Nrf2, HO-1, NQO1, FGF21, UCP1 and UCP2 in the CLK8 group. The results showed that berberine downregulated the glucose content in extracellular fluid in IR-HepG2 cells in a time-and dose-dependent manner. Moreover, berberine inhibited hepatic glucose output and reduced intracellular Ca~(2+) and ROS whereas elevated JC-1 membrane potential and improved mitochondrial structure to enhance ATP production. In addition, berberine upregulated the rate-limiting enzymes such as PFKL, L-PK and PDHA1 to promote glycolysis and aerobic oxidation but also downregulated PGC1α, FoxO1, G6Pase, PEPCK and glucagon to inhibit hepatic gluconeogenesis. Berberine not only upregulated p-Nrf2(Ser40), HO-1 and NQO1 to enhance antioxidant capacity but also upregulated FGF21, UCP1 and UCP2 to promote energy metabolism. Moreover, berberine increased BMAL1, CLOCK and nuclear BMAL1:CLOCK complex whereas CLK8 reduced the nuclear BMAL1:CLOCK complex. Finally, CLK8 decreased PDHA1, PFKL, Nrf2, HO-1, NQO1, FGF21, UCP1, UCP2 and increased FoxO1, PGC1α, G6Pase and glucagon compared with the 20 μmol·L~(-1) berberine group. BMAL1:CLOCK complex inhibited gluconeogenesis, promoted glycolysis and glucose aerobic oxidation pathways, improved the reduction status within mitochondria, protected mitochondrial structure and function, increased ATP energy storage and promoted energy consumption in IR-HepG2 cells. These results suggested that berberine mediated BMAL1:CLOCK complex to coordinate the regulation of hepatic IR cells to improve energy metabolism in vitro.
Humans
;
Berberine/pharmacology*
;
Gluconeogenesis/drug effects*
;
Hep G2 Cells
;
Glucose/metabolism*
;
Liver/drug effects*
;
Energy Metabolism/drug effects*
;
Hypoglycemic Agents/pharmacology*
;
ARNTL Transcription Factors/genetics*
;
Glycolysis/drug effects*
;
Oxidation-Reduction/drug effects*
8.Oral submucous fibrosis: pathogenesis and therapeutic approaches.
Jianfei TANG ; Junjie LIU ; Zekun ZHOU ; Xinyan CUI ; Hua TU ; Jia JIA ; Baike CHEN ; Xiaohan DAI ; Ousheng LIU
International Journal of Oral Science 2025;17(1):8-8
Oral submucous fibrosis (OSF), characterized by excessive deposition of extracellular matrix (ECM) that causes oral mucosal tissue sclerosis, and even cancer transformation, is a chronic, progressive fibrosis disease. However, despite some advancements in recent years, no targeted antifibrotic strategies for OSF have been approved; likely because the complicated mechanisms that initiate and drive fibrosis remain to be determined. In this review, we briefly introduce the epidemiology and etiology of OSF. Then, we highlight how cell-intrinsic changes in significant structural cells can drive fibrotic response by regulating biological behaviors, secretion function, and activation of ECM-producing myofibroblasts. In addition, we also discuss the role of innate and adaptive immune cells and how they contribute to the pathogenesis of OSF. Finally, we summarize strategies to interrupt key mechanisms that cause OSF, including modulation of the ECM, inhibition of inflammation, improvement of vascular disturbance. This review will provide potential routes for developing novel anti-OSF therapeutics.
Humans
;
Oral Submucous Fibrosis/immunology*
;
Extracellular Matrix/metabolism*
;
Myofibroblasts
9.Thermal sensitization of acupoints in patients with knee osteoarthritis: A cross-sectional case-control study.
Jian-Feng TU ; Xue-Zhou WANG ; Shi-Yan YAN ; Yi-Ran WANG ; Jing-Wen YANG ; Guang-Xia SHI ; Wen-Zheng ZHANG ; Li-Na JIN ; Li-Sha YANG ; Dong-Hua LIU ; Li-Qiong WANG ; Bao-Hong MI
Journal of Integrative Medicine 2025;23(3):289-296
OBJECTIVE:
Varied acupoint selections represent a potential cause of the uncertainty surrounding the efficacy of acupuncture for knee osteoarthritis (OA). Skin temperature, a guiding factor for acupoint selection, may help to address this issue. This study explored thermal sensitization of acupoints used for the treatment of knee OA.
METHODS:
This cross-sectional case-control study enrolled cases aged 45-75 years with symptomatic knee OA and age- and gender-matched non-knee OA controls in a 1:1 ratio. All participants underwent infrared thermographic imaging. The primary outcome was the relative skin temperature of acupoint (STA), and the secondary outcome was the absolute STA of 11 acupoints. The Z test was used to compare the relative and absolute STAs between the groups. Principal component analysis was used to extract the common factors (CFs, acupoint cluster) in the STAs. A general linear model was used to identify factors affecting the STA in the knee OA cases. For the group comparisons of relative STA, P < 0.0045 (adjusted for 11 acupoints through Bonferroni correction) was considered to indicate statistical significance. For other analyses, P < 0.05 was used as the threshold for statistical significance.
RESULTS:
The analysis included 308 participants, consisting of 151 cases (mean age: [64.58 ± 6.67] years; male: 25.83%; mean body mass index: [25.70 ± 3.16] kg/m2) and 157 controls (mean age: [63.37 ± 5.96] years; male: 26.11%; mean body mass index: [24.47 ± 2.84] kg/m2). The relative STAs of ST34 (P = 0.0001), EX-LE2 (P < 0.0001), EX-LE5 (P = 0.0006), SP10 (P < 0.0001), BL40 (P = 0.0012) and GB39 (P = 0.0037) were higher in the knee OA group. No difference was found in the STAs of ST35, ST36, SP9, GB33 and GB34. Four CFs were identified for relative STA in both groups. The acupoints within each CF were consistent between the groups. The mean values of the relative STAs across each CF were higher in the knee OA group. In the knee OA cases, no factors were observed to affect the relative STA, while age and gender were found to affect the absolute STA.
CONCLUSION
Among patients with knee OA, thermal sensitization occurs in the acupoints of the lower extremity, exhibiting localized and regional thermal consistencies. The thermally sensitized acupoints that we identified in this study, ST34, SP10, EX-LE2, EX-LE5, GB39 and BL40, may be good choices for the acupuncture treatment of knee OA. Please cite this article as: Tu JF, Wang XZ, Yan SY, Wang YR, Yang JW, Shi GX, Zhang WZ, Jing LN, Yang LS, Liu DH, Wang LQ, Mi BH. Thermal sensitization of acupoints in patients with knee osteoarthritis: A cross-sectional case-control study. J Integr Med. 2025; 23(3): 289-296.
Humans
;
Osteoarthritis, Knee/physiopathology*
;
Male
;
Cross-Sectional Studies
;
Middle Aged
;
Female
;
Acupuncture Points
;
Case-Control Studies
;
Aged
;
Skin Temperature
;
Acupuncture Therapy
10.Analysis on clinicopathology and prognosis of primary IgA nephropathy in children with massive proteinuria
Hua XIA ; Yubing WEN ; Chaoying CHEN ; Juan TU ; Huarong LI ; Haiyun GENG ; Nannan WANG ; Yongli HUANG
Chinese Journal of Nephrology 2024;40(1):36-41
Objective:To investigate the clinicopathological features and the prognosis of IgA nephropathy (IgAN) in children with massive proteinuria.Methods:It was a retrospective cohort study. Clinical data of IgAN children with massive proteinuria admitted to the Department of Nephrology, Children's Hospital Affiliated to Capital Institute of Pediatrics from January 2008 to December 2021 were retrospectively analyzed. Patients were divided into effective group and ineffective group according to whether urine protein turned negative after 6 months of initial treatment. The follow-up endpoint event was defined as a reduction in proteinuria of less than 50% or end-stage renal disease (ESRD) achievement. MedCalc software was used to perform Kaplan-Meier survival analysis, and Log-rank test was used to compare the difference of renal survival between the two groups.Results:A total of 127 patients were diagnosed as primary IgAN by renal biopsy, of whom 57 patients with IgAN showed massive proteinuria. These 57 IgAN patients with macroproteinuria accounted for 44.9% of the total IgAN patients and were enrolled in the study. Among the 57 cases, 33 cases (57.9%) were Lee's grade Ⅲ, 11 cases (19.3%) were below Lee's grade Ⅲ, and 13 cases (22.8%) were above Lee's grade Ⅲ. The follow-up time was 4.0 (3.0,5.8) years. In the initial treatment, among 57 patients, 46 (80.7%) were effective (effective group) and 11 (19.3%) were ineffective (ineffective group). Compared with the effective group, the ineffective group had a higher proportion of concurrent AKI at the onset of disease and longer recovery time of renal function, with significant difference (7/11 vs. 13/46, χ2=4.878, P=0.027). Compared with the effective group, the proportion of Lee grade Ⅲ or above was higher in the ineffective group, and the difference was statistically significant (5/11 vs. 8/46, χ2=3.971, P=0.046). There were significant differences in endocapillary hypercellularity (E1), segmental glomerulosclerosis or adhesion (S1) and cellular/fibrocellular crescents (C2) of Oxford classification between IgAN children with Lee grade Ⅲ or below and those over Lee grade Ⅲ (11/13 vs. 20/44, χ2=6.204, P=0.013; 12/13 vs. 17/44, χ2=11.566, P=0.001; 9/13 vs. 7/44, χ2=14.131, P=0.001). Among 57 patients, endpoint events occurred in 2 patients who both were urinary protein unmitigated, and none of the children progressed to ESRD. There was no significant difference in cumulative renal survival between the two groups by Kaplan-Meier survival analysis and Log-rank test ( χ2=0.537, P=0.460) after addition of calcineurin inhibitors (CNIs) to the initial treatment ineffective group. Conclusions:Macroproteinuria is the prominent manifestation of IgAN in children. The pathological type is mainly Lee grade Ⅲ. Children with macroproteinuria have a good prognosis in the short and medium term after active treatment. For IgAN with macroproteinuria that does not respond well to initial treatment, AKI is more common at onset, and renal function recovery time is longer. The application of CNIs may have a certain effect on improving the renal outcome of IgAN with massive proteinuria.

Result Analysis
Print
Save
E-mail