1.Mass Eradication of Helicobacter pylori to Prevent Gastric Cancer: Theoretical and Practical Considerations.
Yi Chia LEE ; Tsung Hsien CHIANG ; Jyh Ming LIOU ; Hsiu Hsi CHEN ; Ming Shiang WU ; David Y GRAHAM
Gut and Liver 2016;10(1):12-26
Although the age-adjusted incidence of gastric cancer is declining, the absolute number of new cases of gastric cancer is increasing due to population growth and aging. An effective strategy is needed to prevent this deadly cancer. Among the available strategies, screen-and-treat for Helicobacter pylori infection appears to be the best approach to decrease cancer risk; however, implementation of this strategy on the population level requires a systematic approach. The program also must be integrated into national healthcare priorities to allow the limited resources to be most effectively allocated. Implementation will require adoption of an appropriate screening strategy, an efficient delivery system with a timely referral for a positive test, and standardized treatment regimens based on clinical efficacy, side effects, simplicity, duration, and cost. Within the population, there are subpopulations that vary in risk such that a "one size fits all" approach is unlikely to be ideal. Sensitivity analyses will be required to identify whether the programs can be utilized by heterogeneous populations and will likely require adjustments to accommodate the needs of subpopulations.
Health Priorities
;
Helicobacter Infections/complications/diagnosis/microbiology/*therapy
;
Helicobacter pylori
;
Humans
;
Mass Screening
;
Stomach Neoplasms/microbiology/*prevention & control
2.Mesenchymal Stem Cell Secreted-Extracellular Vesicles are Involved in Chondrocyte Production and Reduce Adipogenesis during Stem Cell Differentiation
Yu-Chen TSAI ; Tai-Shan CHENG ; Hsiu-Jung LIAO ; Ming-Hsi CHUANG ; Hui-Ting CHEN ; Chun-Hung CHEN ; Kai-Ling ZHANG ; Chih-Hung CHANG ; Po-Cheng LIN ; Chi-Ying F. HUANG
Tissue Engineering and Regenerative Medicine 2022;19(6):1295-1310
BACKGROUND:
Extracellular vesicles (EVs) are derived from internal cellular compartments, and have potential as a diagnostic and therapeutic tool in degenerative disease associated with aging. Mesenchymal stem cells (MSCs) have become a promising tool for functional EVs production. This study investigated the efficacy of EVs and its effect on differentiation capacity.
METHODS:
The characteristics of MSCs were evaluated by flow cytometry and stem cell differentiation analysis, and a production mode of functional EVs was scaled from MSCs. The concentration and size of EVs were quantitated by Nanoparticle Tracking Analysis (NTA). Western blot analysis was used to assess the protein expression of exosomespecific markers. The effects of MSC-derived EVs were assessed by chondrogenic and adipogenic differentiation analyses and histological observation.
RESULTS
The range of the particle size of adipose-derived stem cells (ADSCs)- and Wharton’s jelly -MSCs-derived EVs were from 130 to 150 nm as measured by NTA, which showed positive expression of exosomal markers. The chondrogenic induction ability was weakened in the absence of EVs in vitro. Interestingly, after EV administration, type II collagen, a major component in the cartilage extracellular matrix, was upregulated compared to the EV-free condition.Moreover, EVs decreased the lipid accumulation rate during adipogenic induction.