1.Alpha-Lipoic Acid Induces Adipose Tissue Browning through AMP-Activated Protein Kinase Signaling in Vivo and in Vitro
Shieh-Yang HUANG ; Ming-Ting CHUNG ; Ching-Wen KUNG ; Shu-Ying CHEN ; Yi-Wen CHEN ; Tong PAN ; Pao-Yun CHENG ; Hsin-Hsueh SHEN ; Yen-Mei LEE
Journal of Obesity & Metabolic Syndrome 2024;33(2):177-188
Background:
AMP-activated protein kinase (AMPK) is a key enzyme for cellular energy homeostasis and improves metabolic disorders. Brown and beige adipose tissues exert thermogenesis capacities to dissipate energy in the form of heat. Here, we investigated the beneficial effects of the antioxidant alpha-lipoic acid (ALA) in menopausal obesity and the underlying mechanisms.
Methods:
Female Wistar rats (8 weeks old) were subjected to bilateral ovariectomy (Ovx) and divided into four groups: Sham (n=8), Ovx (n=11), Ovx+ALA2 (n=10), and Ovx+ALA3 (n=6) (ALA 200 and 300 mg/kg/day, respectively; gavage) for 8 weeks. 3T3-L1 cells were used for in vitro study.
Results:
Rats receiving ALA2 and ALA3 treatment showed significantly lower levels of body weight and white adipose tissue (WAT) mass than those of the Ovx group. ALA improved plasma lipid profiles including triglycerides, total cholesterol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol. Hematoxylin & eosin staining of inguinal WAT showed that ALA treatment reduced Ovx-induced adipocyte size and enhanced uncoupling protein 1 (UCP1) expression. Moreover, plasma levels of irisin were markedly increased in ALA-treated Ovx rats. Protein expression of brown fat-specific markers including UCP1, PRDM16, and CIDEA was downregulated by Ovx but markedly increased by ALA. Phosphorylation of AMPK, its downstream acetyl-CoA carboxylase, and its upstream LKB1 were all significantly increased by ALA treatment. In 3T3-L1 cells, administration of ALA (100 and 250 μM) reduced lipid accumulation and enhanced oxygen consumption and UCP1 protein expression, while inhibition of AMPK by dorsomorphin (5 μM) significantly reversed these effects.
Conclusion
ALA improves estrogen deficiency-induced obesity via browning of WAT through AMPK signaling.
2.Alpha-Lipoic Acid Induces Adipose Tissue Browning through AMP-Activated Protein Kinase Signaling in Vivo and in Vitro
Shieh-Yang HUANG ; Ming-Ting CHUNG ; Ching-Wen KUNG ; Shu-Ying CHEN ; Yi-Wen CHEN ; Tong PAN ; Pao-Yun CHENG ; Hsin-Hsueh SHEN ; Yen-Mei LEE
Journal of Obesity & Metabolic Syndrome 2024;33(2):177-188
Background:
AMP-activated protein kinase (AMPK) is a key enzyme for cellular energy homeostasis and improves metabolic disorders. Brown and beige adipose tissues exert thermogenesis capacities to dissipate energy in the form of heat. Here, we investigated the beneficial effects of the antioxidant alpha-lipoic acid (ALA) in menopausal obesity and the underlying mechanisms.
Methods:
Female Wistar rats (8 weeks old) were subjected to bilateral ovariectomy (Ovx) and divided into four groups: Sham (n=8), Ovx (n=11), Ovx+ALA2 (n=10), and Ovx+ALA3 (n=6) (ALA 200 and 300 mg/kg/day, respectively; gavage) for 8 weeks. 3T3-L1 cells were used for in vitro study.
Results:
Rats receiving ALA2 and ALA3 treatment showed significantly lower levels of body weight and white adipose tissue (WAT) mass than those of the Ovx group. ALA improved plasma lipid profiles including triglycerides, total cholesterol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol. Hematoxylin & eosin staining of inguinal WAT showed that ALA treatment reduced Ovx-induced adipocyte size and enhanced uncoupling protein 1 (UCP1) expression. Moreover, plasma levels of irisin were markedly increased in ALA-treated Ovx rats. Protein expression of brown fat-specific markers including UCP1, PRDM16, and CIDEA was downregulated by Ovx but markedly increased by ALA. Phosphorylation of AMPK, its downstream acetyl-CoA carboxylase, and its upstream LKB1 were all significantly increased by ALA treatment. In 3T3-L1 cells, administration of ALA (100 and 250 μM) reduced lipid accumulation and enhanced oxygen consumption and UCP1 protein expression, while inhibition of AMPK by dorsomorphin (5 μM) significantly reversed these effects.
Conclusion
ALA improves estrogen deficiency-induced obesity via browning of WAT through AMPK signaling.
3.Alpha-Lipoic Acid Induces Adipose Tissue Browning through AMP-Activated Protein Kinase Signaling in Vivo and in Vitro
Shieh-Yang HUANG ; Ming-Ting CHUNG ; Ching-Wen KUNG ; Shu-Ying CHEN ; Yi-Wen CHEN ; Tong PAN ; Pao-Yun CHENG ; Hsin-Hsueh SHEN ; Yen-Mei LEE
Journal of Obesity & Metabolic Syndrome 2024;33(2):177-188
Background:
AMP-activated protein kinase (AMPK) is a key enzyme for cellular energy homeostasis and improves metabolic disorders. Brown and beige adipose tissues exert thermogenesis capacities to dissipate energy in the form of heat. Here, we investigated the beneficial effects of the antioxidant alpha-lipoic acid (ALA) in menopausal obesity and the underlying mechanisms.
Methods:
Female Wistar rats (8 weeks old) were subjected to bilateral ovariectomy (Ovx) and divided into four groups: Sham (n=8), Ovx (n=11), Ovx+ALA2 (n=10), and Ovx+ALA3 (n=6) (ALA 200 and 300 mg/kg/day, respectively; gavage) for 8 weeks. 3T3-L1 cells were used for in vitro study.
Results:
Rats receiving ALA2 and ALA3 treatment showed significantly lower levels of body weight and white adipose tissue (WAT) mass than those of the Ovx group. ALA improved plasma lipid profiles including triglycerides, total cholesterol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol. Hematoxylin & eosin staining of inguinal WAT showed that ALA treatment reduced Ovx-induced adipocyte size and enhanced uncoupling protein 1 (UCP1) expression. Moreover, plasma levels of irisin were markedly increased in ALA-treated Ovx rats. Protein expression of brown fat-specific markers including UCP1, PRDM16, and CIDEA was downregulated by Ovx but markedly increased by ALA. Phosphorylation of AMPK, its downstream acetyl-CoA carboxylase, and its upstream LKB1 were all significantly increased by ALA treatment. In 3T3-L1 cells, administration of ALA (100 and 250 μM) reduced lipid accumulation and enhanced oxygen consumption and UCP1 protein expression, while inhibition of AMPK by dorsomorphin (5 μM) significantly reversed these effects.
Conclusion
ALA improves estrogen deficiency-induced obesity via browning of WAT through AMPK signaling.
4.Combined Assessment of Serum Alpha-Synuclein and Rab35 is a Better Biomarker for Parkinson's Disease
Hung Li WANG ; Chin Song LU ; Tu Hsueh YEH ; Yu Ming SHEN ; Yi Hsin WENG ; Ying Zu HUANG ; Rou Shayn CHEN ; Yu Chuan LIU ; Yi Chuan CHENG ; Hsiu Chen CHANG ; Ying Ling CHEN ; Yu Jie CHEN ; Yan Wei LIN ; Chia Chen HSU ; Huang Li LIN ; Chi Han CHIU ; Ching Chi CHIU
Journal of Clinical Neurology 2019;15(4):488-495
BACKGROUND AND PURPOSE: It is essential to develop a reliable predictive serum biomarker for Parkinson's disease (PD). The accumulation of alpha-synuclein (αSyn) and up-regulated expression of Rab35 participate in the etiology of PD. The purpose of this investigation was to determine whether the combined assessment of serum αSyn and Rab35 is a useful predictive biomarker for PD. METHODS: Serum levels of αSyn or Rab35 were determined in serum samples from 59 sporadic PD patients, 19 progressive supranuclear palsy (PSP) patients, 20 multiple system atrophy (MSA) patients, and 60 normal controls (NC). Receiver operating characteristics (ROC) curves were calculated to determine the diagnostic accuracy of αSyn or/and Rab35 in discriminating PD patients from NC or atypical parkinsonian patients. RESULTS: The levels of αSyn and Rab35 were increased in PD patients. The serum level of Rab35 was positively correlated with that of αSyn in PD patients. Compared to analyzing αSyn or Rab35 alone, the combined analysis of αSyn and Rab35 produced a larger area under the ROC curve and performed better in discriminating PD patients from NC, MSA patients, or PSP patients. When age was dichotomized at 55, 60, 65, or 70 years, the combined assessment of αSyn and Rab35 for classifying PD was better in the group below the cutoff age than in the group above the cutoff age. CONCLUSIONS: Combined assessment of serum αSyn and Rab35 is a better biomarker for discriminating PD patients from NC or atypical parkinsonian patients, and is a useful predictive biomarker for younger sporadic PD patients.
alpha-Synuclein
;
Humans
;
Multiple System Atrophy
;
Parkinson Disease
;
ROC Curve
;
Supranuclear Palsy, Progressive