1.Psychometric Testing of Behavior Assessment for Children.
Hsiao Ling CHUANG ; Ching Pyng KUO ; Chia Ying LI ; Wen Chun LIAO
Asian Nursing Research 2016;10(1):39-44
PURPOSE: The purpose of this study was to test the reliability and validity of the Behavior Assessment for Children (BAC) in a community of school-aged children in Taiwan. METHOD: A school-based sample comprising third grade and fourth grade students was recruited from Taichung City in Taiwan. The parents (n = 248) and teachers (n = 15) of these students completed structured questionnaires, including the Child Behavior Checklist (CBCL) and the proposed BAC. Content validity, concurrent validity, construct validity, internal consistency, and inter-rater reliability of the BAC were assessed. RESULTS: The BAC comprised three subscales (attention, emotion, and self-control) that included 17 items. The content validity index (CVI) score was 0.98. The result of the confirmatory factor analysis (goodness of fit = .90, root mean square of residual = .03, root mean square error of approximation = .06, and comparative fit index = .94) supported the construct validity of the three BAC subscales. The concurrent validity of the BAC subscales significantly correlated with the compatible CBCL subscales (r = .59-.78, p < .001). Cronbach α of the subscales of the BAC ranged from .78 to .92. The intraclass correlation coefficient between the parents and teachers ranged from .31 to .44, and the joint probability of agreement ranged from 31.4% to 92.2%. CONCLUSIONS: The BAC is a valid and reliable instrument for evaluating behavioral problems in schoolaged children.
*Attention
;
Child
;
Child Behavior Disorders/*diagnosis
;
*Diagnostic Techniques and Procedures
;
*Emotions
;
Female
;
Humans
;
Male
;
*Psychometrics
;
Reproducibility of Results
;
*Self-Control
;
Taiwan
2.Feline mammary carcinoma‑derived extracellular vesicle promotes liver metastasis via sphingosine kinase‑1‑mediated premetastatic niche formation
Yi‑Chih CHANG ; Hao‑Ping LIU ; Hsiao‑Li CHUANG ; Jiunn‑Wang LIAO ; Pei‑Ling KAO ; Hsun‑Lung CHAN ; Ter‑Hsin CHEN ; Yu‑Chih WANG
Laboratory Animal Research 2023;39(4):329-343
Background:
Feline mammary carcinoma (FMC) is one of the most prevalent malignancies of female cats. FMC is highly metastatic and thus leads to poor disease outcomes. Among all metastases, liver metastasis occurs in about 25% of FMC patients. However, the mechanism underlying hepatic metastasis of FMC remains largely uncharacterized.
Results:
Herein, we demonstrate that FMC-derived extracellular vesicles (FMC-EVs) promotes the liver metastasis of FMC by activating hepatic stellate cells (HSCs) to prime a hepatic premetastatic niche (PMN). Moreover, we provide evidence that sphingosine kinase 1 (SK1) delivered by FMC-EV was pivotal for the activation of HSC and the formation of hepatic PMN. Depletion of SK1 impaired cargo sorting in FMC-EV and the EV-potentiated HSC activation, and abol‑ ished hepatic colonization of FMC cells.
Conclusions
Taken together, our findings uncover a previously uncharacterized mechanism underlying liver-metas‑ tasis of FMC and provide new insights into prognosis and treatment of this feline malignancy.
3.Innovative Nerve Root Protection in Full-Endoscopic Facet-Resecting Lumbar Interbody Fusion: Controlled Cage Glider Rotation Using the GUARD (Glider Used As a Rotary Device) Technique
Yu-Chia HSU ; Hao-Chun CHUANG ; Wei-Lun CHANG ; Yuan-Fu LIU ; Chao-Jui CHANG ; Yu-Meng HSIAO ; Yi-Hung HUANG ; Keng-Chang LIU ; Chien-Min CHEN ; Hyeun-Sung KIM ; Cheng-Li LIN
Neurospine 2024;21(4):1141-1148
This video presents a case of L4–5 unstable spondylolisthesis treated with full-endoscopic transforaminal lumbar interbody fusion (Endo-TLIF), emphasizing the GUARD (Glider Used as a Rotary Device) technique for nerve root protection. This innovative approach involves controlled rotation of the cage glider before cage insertion to minimize the risk of nerve root injury, a significant complication in Endo-TLIF procedures. The GUARD technique, validated in previous cadaveric studies, provides enhanced safety during cage insertion by protecting the nerve root. A 48-year-old woman with a 3-year history of progressive low back pain and bilateral lower extremity radiculopathy (right-sided predominance) was diagnosed with L4–5 unstable spondylolisthesis and spinal stenosis. After failure of conservative management, she underwent uniportal full-endoscopic facet-resecting transforaminal lumbar interbody fusion using the GUARD technique. Postoperatively, the patient experienced significant symptomatic improvement and resolution of radiculopathy, without any intraoperative nerve root injury or postoperative neurological deficits. This case demonstrates the effectiveness of the GUARD technique in reducing neurological complications and improving patient outcomes.
4.Reducing Postoperative Neurological Complications in Uniportal Full-Endoscopic Lumbar Interbody Fusion: Efficacy of the GUARD Technique Combined With Delayed Ligamentum Flavectomy
Hao-Chun CHUANG ; Yu-Chia HSU ; Yuan-Fu LIU ; Chao-Jui CHANG ; Yu-Meng HSIAO ; Yi-Hung HUANG ; Keng-Chang LIU ; Chien-Min CHEN ; Hyeun Sung KIM ; Cheng-Li LIN
Neurospine 2024;21(4):1199-1209
Objective:
Uniportal full-endoscopic transforaminal lumbar interbody fusion (FE-TLIF) carries a unique risk of nerve traction and abrasion injury during cage insertion. This study aims to evaluate the clinical efficacy of the GUARD technique and delayed ligamentum flavectomy in reducing postoperative radicular pain and neurapraxia in patients undergoing uniportal FE-TLIF.
Methods:
A retrospective analysis was conducted on 45 patients with an average age of 53.9±12.4 years who underwent either FE facet-sparing TLIF (FE fs-TLIF) or FE facet-resecting TLIF (FE fr-TLIF). Patients were divided into 2 groups: the sentinel group (21 patients) using traditional sentinel pin techniques, and the GUARD group (24 patients) using the GUARD technique with delayed ligamentum flavectomy. Patient-reported outcomes included the visual analogue scale (VAS) for leg and back pain, and Oswestry Disability Index. Complication rates, including incidental durotomy, postoperative neurapraxia, and hematoma, were also documented.
Results:
Postoperative radicular pain in the legs was significantly reduced at 6 weeks in the GUARD group compared to the sentinel group (VAS: 2.201 vs. 3.267, p=0.021). The incidence of postoperative neurapraxia was markedly lower in the GUARD group (0% vs. 19%, p=0.047). Both groups showed similar improvements in disc height, segmental lordosis, and lumbar lordosis at the 1-year follow-up, with no significant differences in endplate injury or fusion rates.
Conclusion
The GUARD technique and delayed ligamentum flavectomy significantly enhance patient safety by reducing postoperative radicular pain and neurapraxia without incurring additional costs. These techniques are easy to learn and integrate into existing surgical workflows, offering a valuable improvement for surgeons performing FE-TLIF procedures.
5.Innovative Nerve Root Protection in Full-Endoscopic Facet-Resecting Lumbar Interbody Fusion: Controlled Cage Glider Rotation Using the GUARD (Glider Used As a Rotary Device) Technique
Yu-Chia HSU ; Hao-Chun CHUANG ; Wei-Lun CHANG ; Yuan-Fu LIU ; Chao-Jui CHANG ; Yu-Meng HSIAO ; Yi-Hung HUANG ; Keng-Chang LIU ; Chien-Min CHEN ; Hyeun-Sung KIM ; Cheng-Li LIN
Neurospine 2024;21(4):1141-1148
This video presents a case of L4–5 unstable spondylolisthesis treated with full-endoscopic transforaminal lumbar interbody fusion (Endo-TLIF), emphasizing the GUARD (Glider Used as a Rotary Device) technique for nerve root protection. This innovative approach involves controlled rotation of the cage glider before cage insertion to minimize the risk of nerve root injury, a significant complication in Endo-TLIF procedures. The GUARD technique, validated in previous cadaveric studies, provides enhanced safety during cage insertion by protecting the nerve root. A 48-year-old woman with a 3-year history of progressive low back pain and bilateral lower extremity radiculopathy (right-sided predominance) was diagnosed with L4–5 unstable spondylolisthesis and spinal stenosis. After failure of conservative management, she underwent uniportal full-endoscopic facet-resecting transforaminal lumbar interbody fusion using the GUARD technique. Postoperatively, the patient experienced significant symptomatic improvement and resolution of radiculopathy, without any intraoperative nerve root injury or postoperative neurological deficits. This case demonstrates the effectiveness of the GUARD technique in reducing neurological complications and improving patient outcomes.
6.Reducing Postoperative Neurological Complications in Uniportal Full-Endoscopic Lumbar Interbody Fusion: Efficacy of the GUARD Technique Combined With Delayed Ligamentum Flavectomy
Hao-Chun CHUANG ; Yu-Chia HSU ; Yuan-Fu LIU ; Chao-Jui CHANG ; Yu-Meng HSIAO ; Yi-Hung HUANG ; Keng-Chang LIU ; Chien-Min CHEN ; Hyeun Sung KIM ; Cheng-Li LIN
Neurospine 2024;21(4):1199-1209
Objective:
Uniportal full-endoscopic transforaminal lumbar interbody fusion (FE-TLIF) carries a unique risk of nerve traction and abrasion injury during cage insertion. This study aims to evaluate the clinical efficacy of the GUARD technique and delayed ligamentum flavectomy in reducing postoperative radicular pain and neurapraxia in patients undergoing uniportal FE-TLIF.
Methods:
A retrospective analysis was conducted on 45 patients with an average age of 53.9±12.4 years who underwent either FE facet-sparing TLIF (FE fs-TLIF) or FE facet-resecting TLIF (FE fr-TLIF). Patients were divided into 2 groups: the sentinel group (21 patients) using traditional sentinel pin techniques, and the GUARD group (24 patients) using the GUARD technique with delayed ligamentum flavectomy. Patient-reported outcomes included the visual analogue scale (VAS) for leg and back pain, and Oswestry Disability Index. Complication rates, including incidental durotomy, postoperative neurapraxia, and hematoma, were also documented.
Results:
Postoperative radicular pain in the legs was significantly reduced at 6 weeks in the GUARD group compared to the sentinel group (VAS: 2.201 vs. 3.267, p=0.021). The incidence of postoperative neurapraxia was markedly lower in the GUARD group (0% vs. 19%, p=0.047). Both groups showed similar improvements in disc height, segmental lordosis, and lumbar lordosis at the 1-year follow-up, with no significant differences in endplate injury or fusion rates.
Conclusion
The GUARD technique and delayed ligamentum flavectomy significantly enhance patient safety by reducing postoperative radicular pain and neurapraxia without incurring additional costs. These techniques are easy to learn and integrate into existing surgical workflows, offering a valuable improvement for surgeons performing FE-TLIF procedures.
7.Innovative Nerve Root Protection in Full-Endoscopic Facet-Resecting Lumbar Interbody Fusion: Controlled Cage Glider Rotation Using the GUARD (Glider Used As a Rotary Device) Technique
Yu-Chia HSU ; Hao-Chun CHUANG ; Wei-Lun CHANG ; Yuan-Fu LIU ; Chao-Jui CHANG ; Yu-Meng HSIAO ; Yi-Hung HUANG ; Keng-Chang LIU ; Chien-Min CHEN ; Hyeun-Sung KIM ; Cheng-Li LIN
Neurospine 2024;21(4):1141-1148
This video presents a case of L4–5 unstable spondylolisthesis treated with full-endoscopic transforaminal lumbar interbody fusion (Endo-TLIF), emphasizing the GUARD (Glider Used as a Rotary Device) technique for nerve root protection. This innovative approach involves controlled rotation of the cage glider before cage insertion to minimize the risk of nerve root injury, a significant complication in Endo-TLIF procedures. The GUARD technique, validated in previous cadaveric studies, provides enhanced safety during cage insertion by protecting the nerve root. A 48-year-old woman with a 3-year history of progressive low back pain and bilateral lower extremity radiculopathy (right-sided predominance) was diagnosed with L4–5 unstable spondylolisthesis and spinal stenosis. After failure of conservative management, she underwent uniportal full-endoscopic facet-resecting transforaminal lumbar interbody fusion using the GUARD technique. Postoperatively, the patient experienced significant symptomatic improvement and resolution of radiculopathy, without any intraoperative nerve root injury or postoperative neurological deficits. This case demonstrates the effectiveness of the GUARD technique in reducing neurological complications and improving patient outcomes.
8.Reducing Postoperative Neurological Complications in Uniportal Full-Endoscopic Lumbar Interbody Fusion: Efficacy of the GUARD Technique Combined With Delayed Ligamentum Flavectomy
Hao-Chun CHUANG ; Yu-Chia HSU ; Yuan-Fu LIU ; Chao-Jui CHANG ; Yu-Meng HSIAO ; Yi-Hung HUANG ; Keng-Chang LIU ; Chien-Min CHEN ; Hyeun Sung KIM ; Cheng-Li LIN
Neurospine 2024;21(4):1199-1209
Objective:
Uniportal full-endoscopic transforaminal lumbar interbody fusion (FE-TLIF) carries a unique risk of nerve traction and abrasion injury during cage insertion. This study aims to evaluate the clinical efficacy of the GUARD technique and delayed ligamentum flavectomy in reducing postoperative radicular pain and neurapraxia in patients undergoing uniportal FE-TLIF.
Methods:
A retrospective analysis was conducted on 45 patients with an average age of 53.9±12.4 years who underwent either FE facet-sparing TLIF (FE fs-TLIF) or FE facet-resecting TLIF (FE fr-TLIF). Patients were divided into 2 groups: the sentinel group (21 patients) using traditional sentinel pin techniques, and the GUARD group (24 patients) using the GUARD technique with delayed ligamentum flavectomy. Patient-reported outcomes included the visual analogue scale (VAS) for leg and back pain, and Oswestry Disability Index. Complication rates, including incidental durotomy, postoperative neurapraxia, and hematoma, were also documented.
Results:
Postoperative radicular pain in the legs was significantly reduced at 6 weeks in the GUARD group compared to the sentinel group (VAS: 2.201 vs. 3.267, p=0.021). The incidence of postoperative neurapraxia was markedly lower in the GUARD group (0% vs. 19%, p=0.047). Both groups showed similar improvements in disc height, segmental lordosis, and lumbar lordosis at the 1-year follow-up, with no significant differences in endplate injury or fusion rates.
Conclusion
The GUARD technique and delayed ligamentum flavectomy significantly enhance patient safety by reducing postoperative radicular pain and neurapraxia without incurring additional costs. These techniques are easy to learn and integrate into existing surgical workflows, offering a valuable improvement for surgeons performing FE-TLIF procedures.
9.Innovative Nerve Root Protection in Full-Endoscopic Facet-Resecting Lumbar Interbody Fusion: Controlled Cage Glider Rotation Using the GUARD (Glider Used As a Rotary Device) Technique
Yu-Chia HSU ; Hao-Chun CHUANG ; Wei-Lun CHANG ; Yuan-Fu LIU ; Chao-Jui CHANG ; Yu-Meng HSIAO ; Yi-Hung HUANG ; Keng-Chang LIU ; Chien-Min CHEN ; Hyeun-Sung KIM ; Cheng-Li LIN
Neurospine 2024;21(4):1141-1148
This video presents a case of L4–5 unstable spondylolisthesis treated with full-endoscopic transforaminal lumbar interbody fusion (Endo-TLIF), emphasizing the GUARD (Glider Used as a Rotary Device) technique for nerve root protection. This innovative approach involves controlled rotation of the cage glider before cage insertion to minimize the risk of nerve root injury, a significant complication in Endo-TLIF procedures. The GUARD technique, validated in previous cadaveric studies, provides enhanced safety during cage insertion by protecting the nerve root. A 48-year-old woman with a 3-year history of progressive low back pain and bilateral lower extremity radiculopathy (right-sided predominance) was diagnosed with L4–5 unstable spondylolisthesis and spinal stenosis. After failure of conservative management, she underwent uniportal full-endoscopic facet-resecting transforaminal lumbar interbody fusion using the GUARD technique. Postoperatively, the patient experienced significant symptomatic improvement and resolution of radiculopathy, without any intraoperative nerve root injury or postoperative neurological deficits. This case demonstrates the effectiveness of the GUARD technique in reducing neurological complications and improving patient outcomes.
10.Reducing Postoperative Neurological Complications in Uniportal Full-Endoscopic Lumbar Interbody Fusion: Efficacy of the GUARD Technique Combined With Delayed Ligamentum Flavectomy
Hao-Chun CHUANG ; Yu-Chia HSU ; Yuan-Fu LIU ; Chao-Jui CHANG ; Yu-Meng HSIAO ; Yi-Hung HUANG ; Keng-Chang LIU ; Chien-Min CHEN ; Hyeun Sung KIM ; Cheng-Li LIN
Neurospine 2024;21(4):1199-1209
Objective:
Uniportal full-endoscopic transforaminal lumbar interbody fusion (FE-TLIF) carries a unique risk of nerve traction and abrasion injury during cage insertion. This study aims to evaluate the clinical efficacy of the GUARD technique and delayed ligamentum flavectomy in reducing postoperative radicular pain and neurapraxia in patients undergoing uniportal FE-TLIF.
Methods:
A retrospective analysis was conducted on 45 patients with an average age of 53.9±12.4 years who underwent either FE facet-sparing TLIF (FE fs-TLIF) or FE facet-resecting TLIF (FE fr-TLIF). Patients were divided into 2 groups: the sentinel group (21 patients) using traditional sentinel pin techniques, and the GUARD group (24 patients) using the GUARD technique with delayed ligamentum flavectomy. Patient-reported outcomes included the visual analogue scale (VAS) for leg and back pain, and Oswestry Disability Index. Complication rates, including incidental durotomy, postoperative neurapraxia, and hematoma, were also documented.
Results:
Postoperative radicular pain in the legs was significantly reduced at 6 weeks in the GUARD group compared to the sentinel group (VAS: 2.201 vs. 3.267, p=0.021). The incidence of postoperative neurapraxia was markedly lower in the GUARD group (0% vs. 19%, p=0.047). Both groups showed similar improvements in disc height, segmental lordosis, and lumbar lordosis at the 1-year follow-up, with no significant differences in endplate injury or fusion rates.
Conclusion
The GUARD technique and delayed ligamentum flavectomy significantly enhance patient safety by reducing postoperative radicular pain and neurapraxia without incurring additional costs. These techniques are easy to learn and integrate into existing surgical workflows, offering a valuable improvement for surgeons performing FE-TLIF procedures.