1.En Bloc Resection of Thoracic and Upper Lumbar Spinal Tumors Using a Novel Rotation-Reversion Technique through Posterior-Only Approach
Ming LU ; Changhe HOU ; Wei CHEN ; Zixiong LEI ; Shuangwu DAI ; Shaohua DU ; Qinglin JIN ; Dadi JIN ; Haomiao LI
Clinics in Orthopedic Surgery 2025;17(2):346-353
Background:
En bloc resection is recommended for the treatment of malignant and aggressive benign spinal tumors; however, it often requires a combined anterior-posterior approach, which is usually accompanied by longer surgical duration, increased blood loss, larger trauma, and surgical complexity. The present study describes a novel rotation-reversion technique for en bloc resection of the thoracic and upper lumbar spinal tumors using a posterior-only approach and evaluate its safety and efficacy.
Methods:
Thirteen patients with thoracic and upper lumbar (L1-L3) spinal tumors were treated with en bloc resection using the rotation-reversion technique through a posterior-only approach at our institution between 2015 and 2023. The clinical characteristics and surgical results of the patients were reviewed and analyzed.
Results:
Posterior-only en bloc resection was performed successfully in all 13 patients using the rotation-reversion technique, with a median follow-up of 30.4 months (range, 6–74 months). The average maximum size of these 13 tumors was 5.7 × 5.8 × 4.8 cm.The mean operation time and blood loss were 458.5 minutes (range, 220–880 minutes) and 3,146.2 mL (range, 1,000–6,000 mL), respectively, with 4 of the 13 patients (30.8%) experiencing perioperative complications. Negative margins were achieved in all the 13 patients (100%). One patient experienced local recurrence (7.7%) and 1 patient experienced instrumentation failures. Interbody fusion was confirmed in 11 of the 13 patients (84.6%), with a median fusion time of 6.9 months. All of the 13 patients experienced varying degrees of mild postoperative neurological deficits owing to resection of the nerve roots affected by tumor invasion of the vertebrae. No vessel injury or postoperative neurological paralysis occurred, except 1 patient who had been completely paralyzed before surgery.
Conclusions
The rotation-reversion technique is an effective procedure for en bloc resection of selected thoracic and upper lumbar spinal tumors through the posterior-only approach.
2.En Bloc Resection of Thoracic and Upper Lumbar Spinal Tumors Using a Novel Rotation-Reversion Technique through Posterior-Only Approach
Ming LU ; Changhe HOU ; Wei CHEN ; Zixiong LEI ; Shuangwu DAI ; Shaohua DU ; Qinglin JIN ; Dadi JIN ; Haomiao LI
Clinics in Orthopedic Surgery 2025;17(2):346-353
Background:
En bloc resection is recommended for the treatment of malignant and aggressive benign spinal tumors; however, it often requires a combined anterior-posterior approach, which is usually accompanied by longer surgical duration, increased blood loss, larger trauma, and surgical complexity. The present study describes a novel rotation-reversion technique for en bloc resection of the thoracic and upper lumbar spinal tumors using a posterior-only approach and evaluate its safety and efficacy.
Methods:
Thirteen patients with thoracic and upper lumbar (L1-L3) spinal tumors were treated with en bloc resection using the rotation-reversion technique through a posterior-only approach at our institution between 2015 and 2023. The clinical characteristics and surgical results of the patients were reviewed and analyzed.
Results:
Posterior-only en bloc resection was performed successfully in all 13 patients using the rotation-reversion technique, with a median follow-up of 30.4 months (range, 6–74 months). The average maximum size of these 13 tumors was 5.7 × 5.8 × 4.8 cm.The mean operation time and blood loss were 458.5 minutes (range, 220–880 minutes) and 3,146.2 mL (range, 1,000–6,000 mL), respectively, with 4 of the 13 patients (30.8%) experiencing perioperative complications. Negative margins were achieved in all the 13 patients (100%). One patient experienced local recurrence (7.7%) and 1 patient experienced instrumentation failures. Interbody fusion was confirmed in 11 of the 13 patients (84.6%), with a median fusion time of 6.9 months. All of the 13 patients experienced varying degrees of mild postoperative neurological deficits owing to resection of the nerve roots affected by tumor invasion of the vertebrae. No vessel injury or postoperative neurological paralysis occurred, except 1 patient who had been completely paralyzed before surgery.
Conclusions
The rotation-reversion technique is an effective procedure for en bloc resection of selected thoracic and upper lumbar spinal tumors through the posterior-only approach.
3.En Bloc Resection of Thoracic and Upper Lumbar Spinal Tumors Using a Novel Rotation-Reversion Technique through Posterior-Only Approach
Ming LU ; Changhe HOU ; Wei CHEN ; Zixiong LEI ; Shuangwu DAI ; Shaohua DU ; Qinglin JIN ; Dadi JIN ; Haomiao LI
Clinics in Orthopedic Surgery 2025;17(2):346-353
Background:
En bloc resection is recommended for the treatment of malignant and aggressive benign spinal tumors; however, it often requires a combined anterior-posterior approach, which is usually accompanied by longer surgical duration, increased blood loss, larger trauma, and surgical complexity. The present study describes a novel rotation-reversion technique for en bloc resection of the thoracic and upper lumbar spinal tumors using a posterior-only approach and evaluate its safety and efficacy.
Methods:
Thirteen patients with thoracic and upper lumbar (L1-L3) spinal tumors were treated with en bloc resection using the rotation-reversion technique through a posterior-only approach at our institution between 2015 and 2023. The clinical characteristics and surgical results of the patients were reviewed and analyzed.
Results:
Posterior-only en bloc resection was performed successfully in all 13 patients using the rotation-reversion technique, with a median follow-up of 30.4 months (range, 6–74 months). The average maximum size of these 13 tumors was 5.7 × 5.8 × 4.8 cm.The mean operation time and blood loss were 458.5 minutes (range, 220–880 minutes) and 3,146.2 mL (range, 1,000–6,000 mL), respectively, with 4 of the 13 patients (30.8%) experiencing perioperative complications. Negative margins were achieved in all the 13 patients (100%). One patient experienced local recurrence (7.7%) and 1 patient experienced instrumentation failures. Interbody fusion was confirmed in 11 of the 13 patients (84.6%), with a median fusion time of 6.9 months. All of the 13 patients experienced varying degrees of mild postoperative neurological deficits owing to resection of the nerve roots affected by tumor invasion of the vertebrae. No vessel injury or postoperative neurological paralysis occurred, except 1 patient who had been completely paralyzed before surgery.
Conclusions
The rotation-reversion technique is an effective procedure for en bloc resection of selected thoracic and upper lumbar spinal tumors through the posterior-only approach.
4.En Bloc Resection of Thoracic and Upper Lumbar Spinal Tumors Using a Novel Rotation-Reversion Technique through Posterior-Only Approach
Ming LU ; Changhe HOU ; Wei CHEN ; Zixiong LEI ; Shuangwu DAI ; Shaohua DU ; Qinglin JIN ; Dadi JIN ; Haomiao LI
Clinics in Orthopedic Surgery 2025;17(2):346-353
Background:
En bloc resection is recommended for the treatment of malignant and aggressive benign spinal tumors; however, it often requires a combined anterior-posterior approach, which is usually accompanied by longer surgical duration, increased blood loss, larger trauma, and surgical complexity. The present study describes a novel rotation-reversion technique for en bloc resection of the thoracic and upper lumbar spinal tumors using a posterior-only approach and evaluate its safety and efficacy.
Methods:
Thirteen patients with thoracic and upper lumbar (L1-L3) spinal tumors were treated with en bloc resection using the rotation-reversion technique through a posterior-only approach at our institution between 2015 and 2023. The clinical characteristics and surgical results of the patients were reviewed and analyzed.
Results:
Posterior-only en bloc resection was performed successfully in all 13 patients using the rotation-reversion technique, with a median follow-up of 30.4 months (range, 6–74 months). The average maximum size of these 13 tumors was 5.7 × 5.8 × 4.8 cm.The mean operation time and blood loss were 458.5 minutes (range, 220–880 minutes) and 3,146.2 mL (range, 1,000–6,000 mL), respectively, with 4 of the 13 patients (30.8%) experiencing perioperative complications. Negative margins were achieved in all the 13 patients (100%). One patient experienced local recurrence (7.7%) and 1 patient experienced instrumentation failures. Interbody fusion was confirmed in 11 of the 13 patients (84.6%), with a median fusion time of 6.9 months. All of the 13 patients experienced varying degrees of mild postoperative neurological deficits owing to resection of the nerve roots affected by tumor invasion of the vertebrae. No vessel injury or postoperative neurological paralysis occurred, except 1 patient who had been completely paralyzed before surgery.
Conclusions
The rotation-reversion technique is an effective procedure for en bloc resection of selected thoracic and upper lumbar spinal tumors through the posterior-only approach.
5.The Application of Spatial Resolved Metabolomics in Neurodegenerative Diseases
Lu-Tao XU ; Qian LI ; Shu-Lei HAN ; Huan CHEN ; Hong-Wei HOU ; Qing-Yuan HU
Progress in Biochemistry and Biophysics 2025;52(9):2346-2359
The pathogenesis of neurodegenerative diseases (NDDs) is fundamentally linked to complex and profound alterations in metabolic networks within the brain, which exhibit marked spatial heterogeneity. While conventional bulk metabolomics is powerful for detecting global metabolic shifts, it inherently lacks spatial resolution. This methodological limitation hampers the ability to interrogate critical metabolic dysregulation within discrete anatomical brain regions and specific cellular microenvironments, thereby constraining a deeper understanding of the core pathological mechanisms that initiate and drive NDDs. To address this critical gap, spatial metabolomics, with mass spectrometry imaging (MSI) at its core, has emerged as a transformative approach. It uniquely overcomes the limitations of bulk methods by enabling high-resolution, simultaneous detection and precise localization of hundreds to thousands of endogenous molecules—including primary metabolites, complex lipids, neurotransmitters, neuropeptides, and essential metal ions—directly in situ from tissue sections. This powerful capability offers an unprecedented spatial perspective for investigating the intricate and heterogeneous chemical landscape of NDD pathology, opening new avenues for discovery. Accordingly, this review provides a comprehensive overview of the field, beginning with a discussion of the technical features, optimal application scenarios, and current limitations of major MSI platforms. These include the widely adopted matrix-assisted laser desorption/ionization (MALDI)-MSI, the ultra-high-resolution technique of secondary ion mass spectrometry (SIMS)-MSI, and the ambient ionization method of desorption electrospray ionization (DESI)-MSI, along with other emerging technologies. We then highlight the pivotal applications of spatial metabolomics in NDD research, particularly its role in elucidating the profound chemical heterogeneity within distinct pathological microenvironments. These applications include mapping unique molecular signatures around amyloid β‑protein (Aβ) plaques, uncovering the metabolic consequences of neurofibrillary tangles composed of hyperphosphorylated tau protein, and characterizing the lipid and metabolite composition of Lewy bodies. Moreover, we examine how spatial metabolomics contributes to constructing detailed metabolic vulnerability maps across the brain, shedding light on the biochemical factors that render certain neuronal populations and anatomical regions selectively susceptible to degeneration while others remain resilient. Looking beyond current applications, we explore the immense potential of integrating spatial metabolomics with other advanced research methodologies. This includes its combination with three-dimensional brain organoid models to recapitulate disease-relevant metabolic processes, its linkage with multi-organ axis studies to investigate how systemic metabolic health influences neurodegeneration, and its convergence with single-cell and subcellular analyses to achieve unprecedented molecular resolution. In conclusion, this review not only summarizes the current state and critical role of spatial metabolomics in NDD research but also offers a forward-looking perspective on its transformative potential. We envision its continued impact in advancing our fundamental understanding of NDDs and accelerating translation into clinical practice—from the discovery of novel biomarkers for early diagnosis to the development of high-throughput drug screening platforms and the realization of precision medicine for individuals affected by these devastating disorders.
6.Expert consensus on endodontic therapy for patients with systemic conditions
Xu XIN ; Zheng XIN ; Lin FEI ; Yu QING ; Hou BENXIANG ; Chen ZHI ; Wei XI ; Qiu LIHONG ; Chen WENXIA ; Li JIYAO ; Chen LILI ; Wang ZUOMIN ; Wu HONGKUN ; Lu ZHIYUE ; Zhao JIZHI ; Liang YUHONG ; Zhao JIN ; Pan YIHUAI ; Pan SHUANG ; Wang XIAOYAN ; Yang DEQIN ; Ren YANFANG ; Yue LIN ; Zhou XUEDONG
International Journal of Oral Science 2024;16(3):390-397
The overall health condition of patients significantly affects the diagnosis,treatment,and prognosis of endodontic diseases.A systemic consideration of the patient's overall health along with oral conditions holds the utmost importance in determining the necessity and feasibility of endodontic therapy,as well as selecting appropriate therapeutic approaches.This expert consensus is a collaborative effort by specialists from endodontics and clinical physicians across the nation based on the current clinical evidence,aiming to provide general guidance on clinical procedures,improve patient safety and enhance clinical outcomes of endodontic therapy in patients with compromised overall health.
7.Research on the framework of biosafety standards for pathogenic microbial laboratories
Jing LI ; Zhen CHEN ; Sisi LI ; Bing LU ; Siqing ZHAO ; Rong WANG ; Guoqing CAO ; Wei WANG ; Chuntao MA ; Xuexin HOU ; Yanhai WANG ; Chihong ZHAO ; Guizhen WU
Chinese Journal of Epidemiology 2024;45(2):294-299
Developing and implementing biosafety standards for pathogenic microbiology laboratories is essential to achieving scientific, efficient, and standardized management and operation. This article analyzes the current standardization construction in biosafety in pathogenic microbiology laboratories domestically and internationally. It proposes a framework for the biosafety standard system of pathogenic microbiology laboratories, which mainly includes four parts: basic standards, management standards, technical standards, and industry applications. It provides a reference for the standardization work of pathogenic microbiology laboratories and helps to standardize the biosafety industry in China.
8.Carrier screening for 223 monogenic diseases in Chinese population:a multi-center study in 33 104 individuals
Wei HOU ; Xiaolin FU ; Xiaoxiao XIE ; Chunyan ZHANG ; Jiaxin BIAN ; Xiao MAO ; Juan WEN ; Chunyu LUO ; Hua JIN ; Qian ZHU ; Qingwei QI ; Yeqing QIAN ; Jing YUAN ; Yanyan ZHAO ; Ailan YIN ; Shutie LI ; Yulin JIANG ; Manli ZHANG ; Rui XIAO ; Yanping LU
Journal of Southern Medical University 2024;44(6):1015-1023
Objective To investigate the epidemiological characteristics and mutation spectrum of monogenic diseases in Chinese population through a large-scale,multicenter carrier screening.Methods This study was conducted among a total of 33 104 participants(16 610 females)from 12 clinical centers across China.Carrier status for 223 genes was analyzed using high-throughput sequencing and different PCR methods.Results The overall combined carrier frequency was 55.58%for 197 autosomal genes and 1.84%for 26 X-linked genes in these participants.Among the 16 669 families,874 at-risk couples(5.24%)were identified.Specifically,584 couples(3.50%)were at risk for autosomal genes,306(1.84%)for X-linked genes,and 16 for both autosomal and X-linked genes.The most frequently detected autosomal at-risk genes included GJB2(autosomal recessive deafness type 1A,393 couples),HBA1/HBA2(α-thalassemia,36 couples),PAH(phenylketonuria,14 couples),and SMN1(spinal muscular atrophy,14 couples).The most frequently detected X-linked at-risk genes were G6PD(G6PD deficiency,236 couples),DMD(Duchenne muscular dystrophy,23 couples),and FMR1(fragile X syndrome,17 couples).After excluding GJB2 c.109G>A,the detection rate of at-risk couples was 3.91%(651/16 669),which was lowered to 1.72%(287/16 669)after further excluding G6PD.The theoretical incidence rate of severe monogenic birth defects was approximately 4.35‰(72.5/16 669).Screening for a battery of the top 22 most frequent genes in the at-risk couples could detect over 95%of at-risk couples,while screening for the top 54 genes further increased the detection rate to over 99%.Conclusion This study reveals the carrier frequencies of 223 monogenic genetic disorders in the Chinese population and provides evidence for carrier screening strategy development and panel design tailored to the Chinese population.In carrier testing,genetic counseling for specific genes or gene variants can be challenging,and the couples need to be informed of these difficulties before testing and provided with options for not screening these genes or gene variants.
9.Carrier screening for 223 monogenic diseases in Chinese population:a multi-center study in 33 104 individuals
Wei HOU ; Xiaolin FU ; Xiaoxiao XIE ; Chunyan ZHANG ; Jiaxin BIAN ; Xiao MAO ; Juan WEN ; Chunyu LUO ; Hua JIN ; Qian ZHU ; Qingwei QI ; Yeqing QIAN ; Jing YUAN ; Yanyan ZHAO ; Ailan YIN ; Shutie LI ; Yulin JIANG ; Manli ZHANG ; Rui XIAO ; Yanping LU
Journal of Southern Medical University 2024;44(6):1015-1023
Objective To investigate the epidemiological characteristics and mutation spectrum of monogenic diseases in Chinese population through a large-scale,multicenter carrier screening.Methods This study was conducted among a total of 33 104 participants(16 610 females)from 12 clinical centers across China.Carrier status for 223 genes was analyzed using high-throughput sequencing and different PCR methods.Results The overall combined carrier frequency was 55.58%for 197 autosomal genes and 1.84%for 26 X-linked genes in these participants.Among the 16 669 families,874 at-risk couples(5.24%)were identified.Specifically,584 couples(3.50%)were at risk for autosomal genes,306(1.84%)for X-linked genes,and 16 for both autosomal and X-linked genes.The most frequently detected autosomal at-risk genes included GJB2(autosomal recessive deafness type 1A,393 couples),HBA1/HBA2(α-thalassemia,36 couples),PAH(phenylketonuria,14 couples),and SMN1(spinal muscular atrophy,14 couples).The most frequently detected X-linked at-risk genes were G6PD(G6PD deficiency,236 couples),DMD(Duchenne muscular dystrophy,23 couples),and FMR1(fragile X syndrome,17 couples).After excluding GJB2 c.109G>A,the detection rate of at-risk couples was 3.91%(651/16 669),which was lowered to 1.72%(287/16 669)after further excluding G6PD.The theoretical incidence rate of severe monogenic birth defects was approximately 4.35‰(72.5/16 669).Screening for a battery of the top 22 most frequent genes in the at-risk couples could detect over 95%of at-risk couples,while screening for the top 54 genes further increased the detection rate to over 99%.Conclusion This study reveals the carrier frequencies of 223 monogenic genetic disorders in the Chinese population and provides evidence for carrier screening strategy development and panel design tailored to the Chinese population.In carrier testing,genetic counseling for specific genes or gene variants can be challenging,and the couples need to be informed of these difficulties before testing and provided with options for not screening these genes or gene variants.
10.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.

Result Analysis
Print
Save
E-mail