1.Analysis of temperature rise on the surface of buchanan plugger using thermocouple.
Jin Suk CHO ; Yun Chan HWANG ; Sun Ho KIM ; In Nam HWANG ; Bo Young CHOI ; Young Jin JEONG ; Woo Nam JUHNG ; Won Mann OH
Journal of Korean Academy of Conservative Dentistry 2003;28(4):334-340
This study was performed to evaluate the actual temperature rise on the surface of Buchanan plugger using thermocouple. The heat carrier system 'System B Heatsource' (Model 1005, Analytic Technologies, Redmond, WA, USA) and the Buchanan pluggers of F, FM, M and ML sizes are used for this study. The temperature was set to 200degrees C on digital display and the power level on it was set to 10. Five thermocouples were placed in direct contact with the surface of each size of Buchanan's pluggers at 1 mm increments from the tip to the 4 mm length of shank. The heat control spring was touched for 5 seconds, and the temperature rise on the surface of the pluggers were measured at 1 sec intervals for more than 5 seconds with an accuracy of 0.01 using Data Logger. The data were statistically analyzed by one-way ANOVA. The results were as follows. 1. The position at which the temperature peaked was approximately at 1~2 mm far from the tip of Buchanan plugger (p<0.01). 2. The peak temperature was 215.25+/-2.28degrees C in F plugger, 185.94+/-2.19degrees C in FM plugger, 169.51+/-9.12degrees C in M plugger, and 160.79+/-1.27degrees C in ML plugger and the peak temperature was highest in F plugger and followed by, in descending order, FM plugger, M plugger. ML plugger showed the lowest peak temperature (p<0.01). 3. The temperature on the pluggers was decreased with the increase of touching time. This results suggest that the actual temperature on the surface of the pluggers does not correlate well with the temperature set on digital display. Heat concentrates around the tip. The larger plugger reveals lower temperature rise relatively.
Hot Temperature
2.Factors affecting heat-related diseases in outdoor workers exposed to extreme heat.
Jungsun PARK ; Yangho KIM ; Inbo OH
Annals of Occupational and Environmental Medicine 2017;29(1):30-
BACKGROUND: The objectives of the present study are to: (i) evaluate the effect of environmental and metabolic heat on heat-related illnesses in outdoor workers; and (ii) evaluate the effect of personal factors, including heat acclimation, on the risk of heat-related illnesses in outdoor workers. METHODS: We identified 47 cases of illnesses from exposure to environmental heat in outdoor workers in Korea from 2010 to 2014, based on review of workers' compensation data. We also obtained the information on location, time, and work environment of each heat-related illness. RESULTS: Our major results are that 29 cases (61.7%) occurred during a heat wave. Forty five cases (95.7%) occurred when the maximum estimated WBGT (WBGTmax) was equal to or greater than the case specific threshold value which was determined by acclimatization and metabolic rate. Twenty two cases (46.8%) were not acclimated to the heat. Thirty-seven cases (78.7%) occurred after tropical night (temperature above 25 °C), during which many people may find it hard to sleep. CONCLUSION: Personal risk factors such as heat acclimation as well as environmental factors and high metabolic rate during work are the major determinants of heat-related illnesses.
Acclimatization
;
Extreme Heat*
;
Hot Temperature
;
Humans
;
Infrared Rays
;
Korea
;
Risk Factors
;
Workers' Compensation
3.Design and application of
Chinese Acupuncture & Moxibustion 2021;41(6):683-684
On the base of the principle of penetrating moxibustion and in combination with free adjustment devices such as movable U-shaped moxa stick holder and movable clamp, a new type of moxibustion box exerted on the head is designed, with precise positioning and sufficient heat intensity.
Hot Temperature
;
Moxibustion
;
Temperature
;
Workforce
4.Development and characteristics of automatic ash-removal heat-sensitive moxibustion device.
Xue-Tao ZHANG ; Han-Xiao WANG ; Zhen WANG ; Ya-Lu WANG ; Shuai CUI ; Mei-Qi ZHOU ; Hui LUO ; Can-Guang SUN ; Ming HAO ; Wen HONG ; Sheng-Bing WU
Chinese Acupuncture & Moxibustion 2023;43(5):597-599
An automatic ash-removal heat-sensitive moxibustion device was developed, which could keep relatively constant temperature of heat-sensitive moxibustion, and realize the automatic ignition and automatic ash removal of moxa sticks during heat-sensitive moxibustion. The automatic ash-removal heat-sensitive moxibustion device comprises a bracket and a moxibustion box fixed on the top of the bracket; the bracket is composed of a base and a movable telescopic arm. This device can solve the problems of temperature instability, moxa ash blocking heat transfer and moxa ash falling during heat-sensitive moxibustion, avoiding the scalding caused by moxa ash falling, and reduce the workload of medical staff.
Humans
;
Hot Temperature
;
Moxibustion
;
Temperature
5.Heated Moisture Exchanger (HME) and dead space ventilation. Is Isocapnic conditions unachievable in children?.
Antonio M ESQUINAS ; Prakesh S SHAH
Korean Journal of Anesthesiology 2012;63(3):280-281
No abstract available.
Hot Temperature
;
Ventilation
6.The antigenicities of heat treated and hydrolyzed cow's milk protein.
Allergy, Asthma & Respiratory Disease 2014;2(4):227-228
No abstract available.
Hot Temperature*
;
Milk Proteins*
7.Therapeutic Heat and Cryotherapy in Family Medicine.
Hyun KWAK ; Sangyeoup LEE ; Sang Beom KIM
Journal of the Korean Academy of Family Medicine 2003;24(10):877-883
No abstract available.
Cryotherapy*
;
Hot Temperature*
;
Humans
8.Effects of Six Heat and Miosture Exchange for Use during Endotracheal Anesthesia .
Korean Journal of Anesthesiology 1989;22(3):437-441
Despite many theoretical advantages of humidification of anesthetic gas, the role and method of choice of humidification in anesthesia remains uncertain. With the recent introduction of disposable heat and moisture exchangers (HME), a paueity of information of the specific performance characteristics of various HMEs exists. Using an on-line humidity detector, based on the dry-wet bulb principle, with a fast response temperature sensor (0.l sec), I have reexamined the effectiveness in maintaining humidity and temperature of various commercially available HMEs in clinical settings, and the relationship of the effectiveness of the rate of fresh gas flow. Humid-Vent 2 demonstrated the best result that increased the inspired temperature from 22.78+/-0.2degrees C to 31.35+/-0.89degrees C (absolute humidity; 27.4+/-0.7mg H2O/L). Extreme low fresh gas flow(500ml/min) demonstrated low absolute humidity (18.87+/-1.28 mg H2O/L) that was lower than use of HME.
Anesthesia*
;
Hot Temperature*
;
Humidity
9.Effects of Six Heat and Miosture Exchange for Use during Endotracheal Anesthesia .
Korean Journal of Anesthesiology 1989;22(3):437-441
Despite many theoretical advantages of humidification of anesthetic gas, the role and method of choice of humidification in anesthesia remains uncertain. With the recent introduction of disposable heat and moisture exchangers (HME), a paueity of information of the specific performance characteristics of various HMEs exists. Using an on-line humidity detector, based on the dry-wet bulb principle, with a fast response temperature sensor (0.l sec), I have reexamined the effectiveness in maintaining humidity and temperature of various commercially available HMEs in clinical settings, and the relationship of the effectiveness of the rate of fresh gas flow. Humid-Vent 2 demonstrated the best result that increased the inspired temperature from 22.78+/-0.2degrees C to 31.35+/-0.89degrees C (absolute humidity; 27.4+/-0.7mg H2O/L). Extreme low fresh gas flow(500ml/min) demonstrated low absolute humidity (18.87+/-1.28 mg H2O/L) that was lower than use of HME.
Anesthesia*
;
Hot Temperature*
;
Humidity
10.Effect of light-curing, pressure, oxygen inhibition, and heat on shear bond strength between bis-acryl provisional restoration and bis-acryl repair materials.
Ji Suk SHIM ; Jeong Yol LEE ; Yeon Jo CHOI ; Sang Wan SHIN ; Jae Jun RYU
The Journal of Advanced Prosthodontics 2015;7(1):47-50
PURPOSE: This study aimed to discover a way to increase the bond strength between bis-acryl resins, using a comparison of the shear bond strengths attained from bis-acryl resins treated with light curing, pressure, oxygen inhibition, and heat. MATERIALS AND METHODS: Self-cured bis-acryl resin was used as both a base material and as a repair material. Seventy specimens were distributed into seven groups according to treatment methods: pressure - stored in a pressure cooker at 0.2 Mpa; oxygen inhibition- applied an oxygen inhibitor around the repaired material,; heat treatment - performed heat treatment in a dry oven at 60degrees C, 100degrees C, or 140degrees C. The shear bond strength was measured with a universal testing machine, and the shear bond strength (MPa) was calculated from the peak load of failure. A comparison of the bond strength between the repaired specimens was conducted using one-way ANOVA and Tukey multiple comparison tests (alpha=.05). RESULTS: There were no statistically significant differences in the shear bond strength between the control group and the light curing, pressure, and oxygen inhibition groups. However, the heat treatment groups showed statistically higher bond strengths than the groups treated without heat, and the groups treated at a higher temperature resulted in higher bond strengths. Statistically significant differences were seen between groups after different degrees of heat treatment, except in groups heated at 100degrees C and 140degrees C. CONCLUSION: Strong bonding can be achieved between a bis-acryl base and bis-acryl repair material after heat treatment.
Hot Temperature*
;
Oxygen*