1.Antiviral Activity of Chrysin Derivatives against Coxsackievirus B3 in vitro and in vivo.
Jae Hyoung SONG ; Bo Eun KWON ; Hongjun JANG ; Hyunju KANG ; Sungchan CHO ; Kwisung PARK ; Hyun Jeong KO ; Hyoungsu KIM
Biomolecules & Therapeutics 2015;23(5):465-470
Chrysin is a 5,7-dihydroxyflavone and was recently shown to potently inhibit enterovirus 71 (EV71) by suppressing viral 3C protease (3Cpro) activity. In the current study, we investigated whether chrysin also shows antiviral activity against coxsackievirus B3 (CVB3), which belongs to the same genus (Enterovirus) as EV71, and assessed its ability to prevent the resulting acute pancreatitis and myocarditis. We found that chrysin showed antiviral activity against CVB3 at 10 muM, but exhibited mild cellular cytotoxicity at 50 muM, prompting us to synthesize derivatives of chrysin to increase the antiviral activity and reduce its cytotoxicity. Among four 4-substituted benzyl derivatives derived from C(5) benzyl-protected derivatives 7, 9-11 had significant antiviral activity and showed the most potent activity against CVB3 with low cytotoxicity in Vero cells. Intraperitoneal injection of CVB3 in BALB/c mice with 1x106 TCID50 (50% tissue culture infective dose) of CVB3 induced acute pancreatitis with ablation of acinar cells and increased serum CXCL1 levels, whereas the daily administration of 9 for 5 days significantly alleviated the pancreatic inflammation and reduced the elevation in serum CXCL1 levels. Collectively, we assessed the anti-CVB3 activities of chrysin and its derivatives, and found that among 4-substituted benzyl derivatives, 9 exhibited the highest activity against CVB3 in vivo, and protected mice from CVB3-induced pancreatic damage, simultaneously lowering serum CXCL1 levels.
Acinar Cells
;
Animals
;
Enterovirus
;
Inflammation
;
Injections, Intraperitoneal
;
Mice
;
Myocarditis
;
Pancreatitis
;
Vero Cells
2.Macakurzin C Derivatives as a Novel Pharmacophore for Pan-Peroxisome Proliferator-Activated Receptor Modulator
Hyejin KO ; Seungchan AN ; Hongjun JANG ; Sungjin AHN ; In Guk PARK ; Seok Young HWANG ; Junpyo GONG ; Soyeon OH ; Soo Yeon KWAK ; Won Jun CHOI ; Hyoungsu KIM ; Minsoo NOH
Biomolecules & Therapeutics 2023;31(3):312-318
The natural flavonoid macakurzin C (1) exhibited adiponectin biosynthesis-inducing activity during adipogenesis in human bone marrow mesenchymal stem cells and its molecular mechanism was directly associated with a pan-peroxisome proliferator-activated receptor (PPAR) modulator affecting all three PPAR subtypes α, γ, and δ. In this study, increases in adiponectin biosynthesisinducing activity by macakurzin C derivatives (2–7) were studied. The most potent adiponectin biosynthesis-inducing compound 6, macakurzin C 3,5-dimethylether, was elucidated as a dual PPARα/γ modulator. Compound 6 may exhibit the most potent activity because of the antagonistic relationship between PPARδ and PPARγ. Docking studies revealed that the O-methylation of macakurzin C to generate compound 6 significantly disrupted PPARδ binding. Compound 6 has therapeutic potential in hypoadiponectinemia-related metabolic diseases.