1.Traditional Tibetan medicine plant resource of Polygonaceae family in eastern of Qinghai-Tibet plateau.
Hongdong GONG ; Defang XIE ; Haicai MA ; Shuqing GUO ; Xiong MA ; Yulin WANG
China Journal of Chinese Materia Medica 2009;34(8):957-960
The eco-environment in eastern part of Qinghai-Tibet plateau is a rather complicated complex. The plants species there are quite diverse. The plant resource from Polygonaceae family used in traditional Tibetan medicine is very rich according to preliminary investigation. There were 6 genera and 15 species. The flora and the medicine value of them were analyzed. And some suggestions about traditional Tibetan medicine plant resource exploitation and utilization were presented.
China
;
Medicine, Tibetan Traditional
;
methods
;
Polygonaceae
2.Application of the ArcherQA three-dimensional dose verification system in intensity-modulated radiotherapy plans for nasopharyngeal carcinoma
Penghui WANG ; Shuai GONG ; Shouliang DING ; Lu YANG ; Meng WANG ; Xi PEI ; Xiaoyan HUANG ; Hongdong LIU
Chinese Journal of Radiological Medicine and Protection 2022;42(8):598-604
Objective:To investigate the feasibility of applying the ArcherQA three-dimensional (3D) dosimetric verification system in intensity-modulated radiotherapy (IMRT) plans for nasopharyngeal carcinoma (NPC).Methods:A retrospective analysis was conducted for 105 NPC patients′ IMRT plans developed using the Eclipse treatment planning system (TPS). Dose verification was conducted using the ArcherQA system and through portal dosimetry (PD). Moreover, this study compared γ passing rates (criteria: 3 mm/3%, TH = 10%) between ArcherQA and PD and the doses delivered to the target volume ( Dmean, D90%) and organs at risk (OARs) ( Dmean) between ArcherQA and TPS, and analyzed the 3D γ passing rates of each organ at risk calculated by ArcherQA. Results:The average 3D γ passing rate calculated by ArcherQA was (99.04±1.01)%, and the average 2D γ passing rate measured by PD was (99.49±0.78)%, with statistically significant differences ( t=-3.35, P< 0.05). The dosimetric differences to the target volume between ArcherQA and TPS were as follows: the average difference in Dmean to the gross tumor volume (GTV) was (0.57±0.48)%, and the average difference in D90% was (0.65±0.56)%. For the target volume, the average γ passing rate was (97.67±3.43)% for GTV, (97.80±4.35)% for GTVnd-L, (97.82±4.07)% for GTVnd-R, (97.88±2.44)% for CTV1, and (96.64±4.32)% for CTV2. The mean dose difference of each target volume was CTV1 (0.57±0.46)%, GTVnd-L (0.85±0.55)%, GTVnd-R (0.73±0.55)%, and CTV2 (0.88±0.52)%. For OARs, the mean γ passing rate was (99.93±0.22)% for the brainstem, (99.17±2.82)% for the optic chiasm, (100±0)% for the lens, (99.56±1.05)% for the spinal cord, (99.00±2.06)% for the thyroid, and (87.86±10.42)% for the trachea. Statistically significant differences in the average doses to OARs were observed ( t=-14.62 to 4.82, P<0.05), except for those to the left optic nerve, the right hippocampus, and the right parotid gland. Conclusions:Based on the high-performance GPU platform and the Monte Carlo dose algorithm, ArcherQA can provide accurate 3D dose distribution and 3D γ passing rates inside patients according to CT images and provide the dose volume histogram (DVH) of various regions of interest (ROIs). Therefore, the ArcherQA three-dimensional dose verification system can be applied to IMRT plans for NPC. Moreover, it is inducive to improve the treatment efficiency since it does not occupy the accelerator operation time.