1.Translational Research of Electromagnetic Fields on Diseases Related With Bone Remodeling: Review and Prospects
Peng SHANG ; Jun-Yu LIU ; Sheng-Hang WANG ; Jian-Cheng YANG ; Zhe-Yuan ZHANG ; An-Lin LI ; Hao ZHANG ; Yu-Hong ZENG
Progress in Biochemistry and Biophysics 2025;52(2):439-455
Electromagnetic fields can regulate the fundamental biological processes involved in bone remodeling. As a non-invasive physical therapy, electromagnetic fields with specific parameters have demonstrated therapeutic effects on bone remodeling diseases, such as fractures and osteoporosis. Electromagnetic fields can be generated by the movement of charged particles or induced by varying currents. Based on whether the strength and direction of the electric field change over time, electromagnetic fields can be classified into static and time-varying fields. The treatment of bone remodeling diseases with static magnetic fields primarily focuses on fractures, often using magnetic splints to immobilize the fracture site while studying the effects of static magnetic fields on bone healing. However, there has been relatively little research on the prevention and treatment of osteoporosis using static magnetic fields. Pulsed electromagnetic fields, a type of time-varying field, have been widely used in clinical studies for treating fractures, osteoporosis, and non-union. However, current clinical applications are limited to low-frequency, and research on the relationship between frequency and biological effects remains insufficient. We believe that different types of electromagnetic fields acting on bone can induce various “secondary physical quantities”, such as magnetism, force, electricity, acoustics, and thermal energy, which can stimulate bone cells either individually or simultaneously. Bone cells possess specific electromagnetic properties, and in a static magnetic field, the presence of a magnetic field gradient can exert a certain magnetism on the bone tissue, leading to observable effects. In a time-varying magnetic field, the charged particles within the bone experience varying Lorentz forces, causing vibrations and generating acoustic effects. Additionally, as the frequency of the time-varying field increases, induced currents or potentials can be generated within the bone, leading to electrical effects. When the frequency and power exceed a certain threshold, electromagnetic energy can be converted into thermal energy, producing thermal effects. In summary, external electromagnetic fields with different characteristics can generate multiple physical quantities within biological tissues, such as magnetic, electric, mechanical, acoustic, and thermal effects. These physical quantities may also interact and couple with each other, stimulating the biological tissues in a combined or composite manner, thereby producing biological effects. This understanding is key to elucidating the electromagnetic mechanisms of how electromagnetic fields influence biological tissues. In the study of electromagnetic fields for bone remodeling diseases, attention should be paid to the biological effects of bone remodeling under different electromagnetic wave characteristics. This includes exploring innovative electromagnetic source technologies applicable to bone remodeling, identifying safe and effective electromagnetic field parameters, and combining basic research with technological invention to develop scientifically grounded, advanced key technologies for innovative electromagnetic treatment devices targeting bone remodeling diseases. In conclusion, electromagnetic fields and multiple physical factors have the potential to prevent and treat bone remodeling diseases, and have significant application prospects.
2.Review on alcohol exposure associated embryonic stem cell differentiation mechanisms
Jing GAO ; Bingchun LIU ; Hong CHEN ; Peixin XU ; Xin GUO ; Jianlong YUAN ; Yang LIU
Journal of Environmental and Occupational Medicine 2025;42(5):637-643
Alcohol exposure, as a widespread environmental factor, is highly toxic and teratogenic. Embryonic stem cells (ESCs) are pluripotent and key to development, and their gene expression is tightly regulated, allowing the cells to differentiate without self-renewal. Numerous studies showed that alcohol is an important factor affecting the differentiation of ESCs. In this paper, we systematically summarized four major molecular mechanisms underlying alcohol associated differentiation of ESCs: (1) inhibition of the Wnt signaling pathway; (2) restriction of the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway; (3) alteration of the expression of pluripotent transcription factors; and (4) activation of the nuclear transcriptional program. Through the above mechanisms, alcohol induces aberrant expression of differentiation-related genes and alters the direction of cellular differentiation towards specific lineages, thereby affecting normal embryonic development. Based on the studies on ESCs modeling and other in vitro and in vivo differentiation experiments, the molecular basis of how alcohol affects differentiation by interfering with signaling networks and transcriptional regulation was elucidated, and the results of current research in this field were also summarized, which is crucial for understanding alcohol-mediated toxic effects.
3.Effects of common environmental pollutants on sperm DNA methylation
Xin GUO ; Bingchun LIU ; Huizeng WANG ; Hong CHEN ; Peixin XU ; Jianlong YUAN
Journal of Environmental and Occupational Medicine 2025;42(7):876-883
Infertility is a common reproductive disorder affecting millions of couples worldwide. It is estimated that male factors account for about 30%-50% of infertility cases, and some studies have found that the concentration of male sperm gradually decreases over time, a trend that suggests the importance of male fertility. Many factors contribute to the decline of male fertility, among which environmental factors have received widespread attention. After reaching adulthood, spermatogonial stem cells will continue to produce sperm, but these cells exist outside the blood testicular barrier, which makes them highly sensitive to environmental conditions such as air pollution, tobacco smoke, radiation, and heavy metals. It is reported that exposure to these adverse environmental factors not only causes oxidative stress and DNA damage to germ cells, but also leads to abnormal epigenetic modification of sperm DNA, thereby causing a series of diseases. This article reviewed the abnormal methylation changes in DNA associated with exposure to environmental pollutants during spermatogenesis and how these changes affect the quantity, quality, and function of spermatozoa.
4.Advances in application of small-molecule compounds in neuronal reprogramming.
Zi-Wei DAI ; Hong LIU ; Yi-Min YUAN ; Jing-Yi ZHANG ; Shang-Yao QIN ; Zhi-Da SU
Acta Physiologica Sinica 2025;77(1):181-193
Neuronal reprogramming is an innovative technique for converting non-neuronal somatic cells into neurons that can be used to replace lost or damaged neurons, providing a potential effective therapeutic strategy for central nervous system (CNS) injuries or diseases. Transcription factors have been used to induce neuronal reprogramming, while their reprogramming efficiency is relatively low, and the introduction of exogenous genes may result in host gene instability or induce gene mutation. Therefore, their future clinical application may be hindered by these safety concerns. Compared with transcription factors, small-molecule compounds have unique advantages in the field of neuronal reprogramming, which can overcome many limitations of traditional transcription factor-induced neuronal reprogramming. Here, we review the recent progress in the research of small-molecule compound-mediated neuronal reprogramming and its application in CNS regeneration and repair.
Humans
;
Cellular Reprogramming/drug effects*
;
Neurons/cytology*
;
Animals
;
Transcription Factors
;
Small Molecule Libraries/pharmacology*
;
Nerve Regeneration
5.Chemical composition and efficacy of warming lung and resolving fluid retention of Asarum forbesii grown under different shading conditions.
Lu LIAO ; Li-Xian LU ; Hong-Zhuan SHI ; Qiao-Sheng GUO ; Cheng-Hao FEI ; Kun ZHAO ; Yuan-Yuan XING ; Yong SU ; Chang LIU ; Xin-Yue YUAN
China Journal of Chinese Materia Medica 2025;50(2):384-394
Asarum forbesii is a perennial herb born in a shaded and humid environment, which is warm in nature. With the efficacy of warming lung, resolving fluid retention, and relieving coughs, it can be used to treat the syndrome of cold fluid accumulating in lung. To investigate the effects of different shading conditions on the composition and efficacy of A. forbesii, this study planted A. forbesii under 20% natural light(NL20), 40% natural light(NL40), 60% natural light(NL60), and 80% natural light(NL80) and utilized ultra performance liquid chromatography(UPLC) and micro broth 2-fold dilution method to detect the volatile chemical compounds and the minimum inhibitory concentration. At the same time, the study investigated the effects of A. forbesii grown under different shading conditions on the signs, pathological changes of lung tissues, serum cytokine levels, activities of mitochondrial respiratory chain complexes Ⅰ-Ⅴ in lung tissues, and relative expression of related genes of mice with syndrome of cold fluid accumulating in lung. The results indicated that with the increase of shading, the content of kakuol, methyl eugenol, and asarinin in A. forbesii and the antibacterial effect showed a tendency of increasing first and then decreasing, and the NL40 group was significantly better than the other groups. Under the conditions of NL20 and NL40, A. forbesii significantly alleviated the pathological damage to lung tissues, restored the homeostasis of the lung, and enhanced the energy metabolism level of mice with syndrome of cold fluid accumulating in lung. In addition, A. forbesii planted under the two conditions reduced the content of interleukin-8(IL-8), interleukin-13(IL-13), tumor necrosis factor-α(TNF-α), and mucin 5AC(MUC5AC), increased the levels of interleukin-10(IL-10) and aquaporin 1(AQP1), lowered the expression of MMP9, VEGF, TGF-β, and MAPK3. In conclusion, the therapeutic effect of A. forbesii on the syndrome of cold fluid accumulating in lung was positively correlated with the degree of shading, and the chemical composition and efficacy of warming lung and resolving fluid retention were optimal under the conditions of NL20-NL40. This study can provide reference for the pharmacological research and cultivation of A. forbesii.
Animals
;
Mice
;
Lung/pathology*
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Light
;
Cytokines/genetics*
;
Humans
6.Mechanism of Chaishao Kaiyu Decoction in ameliorating hippocampal neuroinflammation in depressed rats based on complement component C3/C3aR pathway.
Ying-Juan TANG ; Hai-Peng GUO ; Man-Shu ZOU ; Yuan-Shan HAN ; Jun-Cheng LIU ; Yu-Hong WANG
China Journal of Chinese Materia Medica 2025;50(1):1-9
This study investigated the mechanism of Chaishao Kaiyu Decoction in improving hippocampal neuroinflammation in depressed rats based on complement component 3(C3)/C3 receptor(C3aR). A total of 60 SD rats were randomly divided into a blank group, a model group, high, medium, and low dose groups of Chaishao Kaiyu Decoction, and a positive drug group, with 10 rats in each group. Except for the blank group, chronic unpredictable mild stress(CUMS) was used to construct depression models in other groups. Sucrose preference, open-field experiment, forced swimming, and water maze were used to detect the changes in depression-like behavior in each group. Enzyme-linked immunosorbent assay(ELISA) was used to detect the serum inflammatory factor level in rats, and hematoxylin-eosin(HE) staining and Nissl staining were employed to observe the pathological damage of hippocampal neurons. Golgi-Cox staining was used to observe the dendritic spine damage of hippocampal neurons, and immunofluorescence and Western blot were utilized to detect the expression of microglial marker Iba-1 and C3/C3aR protein in the hippocampus of rats. The behavioral results showed that compared with the model group, Chaishao Kaiyu Decoction could significantly strengthen the sugar water preference, increase the distance and number of voluntary activities, shorten the immobility time in forced swimming and the successful incubation period of positioning navigation, and prolong the stay time of space exploration in the target quadrant. ELISA results showed that the content of inflammatory factors in the hippocampus of depressed rats was significantly higher than that of the blank group, and the content of inflammatory factors decreased significantly after the intervention of Chaishao Kaiyu Decoction. In addition, Chaishao Kaiyu Decoction could relieve pathological damage such as cell swelling and loose arrangement of hippocampus tissue. In the Western blot experiment, the expression levels of C3 and C3aR proteins in the model group were higher than those in the blank group, while the expression of C3 and C3aR in Chaishao Kaiyu Decoction could be down-regulated. Immunofluorescence results showed that compared with the model group, the fluorescence intensity of microglia marker Iba-1 decreased significantly after the intervention of Chaishao Kaiyu Decoction and positive drugs. The antidepressant effect of Chaishao Kaiyu Decoction may be related to the down-regulation of C3/C3aR signaling pathway-related proteins, thus alleviating hippocampal inflammation.
Animals
;
Hippocampus/metabolism*
;
Rats, Sprague-Dawley
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats
;
Male
;
Depression/metabolism*
;
Complement C3/metabolism*
;
Receptors, Complement/metabolism*
;
Humans
;
Neuroinflammatory Diseases/genetics*
7.Phase changes and quantity-quality transfer of raw material, calcined decoction pieces, and standard decoction of Ostreae Concha (Ostrea rivularis).
Hong-Yi ZHANG ; Jing-Wei ZHOU ; Jia-Wen LIU ; Wen-Bo FEI ; Shi-Ru HUANG ; Yu-Mei CHEN ; Chong-Yang LI ; Fei-Fei LI ; Qiao-Ling MA ; Fu WANG ; Yuan HU ; You-Ping LIU ; Shi-Lin CHEN ; Lin CHEN ; Hong-Ping CHEN
China Journal of Chinese Materia Medica 2025;50(5):1209-1223
The phase changes and quantity-quality transfer of 17 batches of Ostreae Concha(Ostrea rivularis) during the raw material-calcined decoction pieces-standard decoction process were analyzed. The content of calcium carbonate(CaCO_3), the main component, was determined by chemical titration, and the extract yield and transfer rate were calculated. The CaCO_3 content in the raw material, calcined decoction pieces, and standard decoction was 94.39%-98.80%, 95.03%-99.22%, and 84.58%-90.47%, respectively. The process of raw material to calcined decoction pieces showed the yield range of 96.85% to 98.55% and the CaCO_3 transfer rate range of 96.92% to 99.27%. The process of calcined decoction pieces to standard decoction showed the extract yield range of 2.86% to 5.48% and the CaCO_3 transfer rate range of 2.59% to 5.13%. The results of X-ray fluorescence(XRF) assay showed that the raw material, calcined decoction pieces, and standard decoction mainly contained Ca, Na, Mg, Si, Br, Cl, Al, Fe, Cr, Mn, and K. The chemometric results showed an increase in the relative content of Cr, Fe, and Si from raw material to calcined decoction pieces and an increase in the relative content of Mg, Al, Br, K, Cl, and Na from calcined decoction pieces to standard decoction. X-ray diffraction(XRD) was employed to establish XRD characteristic patterns of the raw material, calcined decoction pieces, and standard decoction. The XRD results showed that the main phase of all three was calcite, and no transformation of crystalline form or generation of new phase was observed. Fourier transform infrared spectroscopy(FTIR) was employed to establish the FTIR characteristic spectra of the raw material, calcined decoction pieces, and standard decoction. The FTIR results showed that the raw material had internal vibrations of O-H, C-H, C=O, C-O, and CO■ groups. Due to the loss of organic matter components after calcination, no information about the vibrations of C-H, C=O, and C-O groups was observed in the spectra of calcined decoction pieces and standard decoction. In summary, this study elucidated the quantity-quality transfer and phase changes in the raw material-calcined decoction pieces-standard decoction process by determining the CaCO_3 content, calculating the extract yield and transfer rate, and comparing the element changes, FTIR characteristic spectra, and XRD characteristic pattern. The results were reasonable and reliable, laying a foundation for the subsequent process research and quality control of the formula granules of calcined Ostreae Concha(O. rivularis Gould), and providing ideas and methods for the quality control of the whole process of raw material-decoction pieces-standard decoction-formula granules of Ostreae Concha and other testacean traditional Chinese medicine.
Drugs, Chinese Herbal/isolation & purification*
;
Calcium Carbonate/analysis*
;
Quality Control
8.Effect and mechanism of Shenmai Injection in regulating copper death in myocardial fibrosis in rats.
Si-Tong LIU ; Zhi-Yuan GUO ; Yue ZOU ; Zhi-An CHEN ; Shuai ZHANG ; Yan WANG ; Li-Ying WANG ; Yi-Hong ZHANG ; Zhi LIU
China Journal of Chinese Materia Medica 2025;50(6):1601-1609
Based on copper death, this study investigates the effect and mechanism of Shenmai Injection on isoproterenol(ISO)-induced myocardial fibrosis(MF) in rats. SPF-grade male SD rats were randomly divided into a normal group, model group, captopril(5 mg·kg~(-1)) positive control group, and Shenmai Injection low(6 mL·kg~(-1)), medium(9 mL·kg~(-1)), and high(12 mL·kg~(-1)) dose groups. Except for the normal group, the rats in the other groups were subcutaneously injected with ISO(5 mg·kg~(-1)) once a day for 10 consecutive days to establish an MF model. Starting from the second day after successful modeling, intraperitoneal injections of the respective treatments were administered for 28 consecutive days. Hematoxylin-eosin(HE) and Masson staining were used to observe pathological changes and fibrosis levels in the myocardial tissue. Colorimetry was employed to detect serum Cu~(2+) concentration in rats. The levels of inflammatory cytokines interleukin-6(IL-6), interleukin-1β(IL-1β), interleukin-18(IL-18), tumor necrosis factor-α(TNF-α), as well as mitochondrial energy metabolites adenosine triphosphate(ATP), adenosine diphosphate(ADP), and adenosine monophosphate(AMP) in serum were measured using enzyme-linked immunosorbent assay(ELISA). Western blot was performed to detect the expression of collagen Ⅰ(Col-Ⅰ), collagen Ⅲ(Col-Ⅲ), and copper death-related proteins dihydrolipoamide acetyltransferase(DLAT), ferredoxin 1(FDX1), lipoic acid synthetase(LIAS), and heat shock protein 70(HSP70) in myocardial tissue. Immunofluorescence was used to detect the expression of DLAT, FDX1, and HSP70, while immunohistochemistry was conducted to examine the expressions of DLAT, FDX1, LIAS, and HSP70. The results showed that, compared to the model group, the myocardial structure disorder and collagen fiber deposition in the drug treatment groups were significantly improved, the cardiac index level was reduced, serum Cu~(2+), IL-6, IL-1β, IL-18, TNF-α, ADP, and AMP levels were significantly decreased, ATP levels were significantly increased, and the expressions of Col-Ⅰ, Col-Ⅲ, and HSP70 proteins in myocardial tissue were significantly reduced, while the expressions of DLAT, FDX1, and LIAS proteins were significantly elevated. In conclusion, Shenmai Injection effectively alleviates myocardial structure disorder and interstitial collagen fiber deposition in ISO-induced MF rats, promotes copper excretion, and reduces copper death in the ISO-induced rat MF model.
Animals
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Rats
;
Myocardium/metabolism*
;
Drug Combinations
;
Fibrosis/metabolism*
;
Copper/blood*
;
Cardiomyopathies/genetics*
;
Humans
9.Processing technology of calcined Magnetitum based on concept of QbD and its XRD characteristic spectra.
De-Wen ZENG ; Jing-Wei ZHOU ; Tian-Xing HE ; Yu-Mei CHEN ; Huan-Huan XU ; Jian FENG ; Yue YANG ; Xin CHEN ; Jia-Liang ZOU ; Lin CHEN ; Hong-Ping CHEN ; Shi-Lin CHEN ; Yuan HU ; You-Ping LIU
China Journal of Chinese Materia Medica 2025;50(9):2391-2403
Guided by the concept of quality by design(QbD), this study optimizes the calcination and quenching process of calcined Magnetitum and establishes the XRD characteristic spectra of calcined Magnetitum, providing a scientific basis for the formulation of quality standards. Based on the processing methods and quality requirements of Magnetitum in the Chinese Pharmacopoeia, the critical process parameters(CPPs) identified were calcination temperature, calcination time, particle size, laying thickness, and the number of vinegar quenching cycles. The critical quality attributes(CQAs) included Fe mass fraction, Fe~(2+) dissolution, and surface color. The weight coefficients were determined by combining Analytic Hierarchy Process(AHP) and the criteria importance though intercrieria correlation(CRITIC) method, and the calcination process was optimized using orthogonal experimentation. Surface color was selected as a CQA, and based on the principle of color value, the surface color of calcined Magnetitum was objectively quantified. The vinegar quenching process was then optimized to determine the best processing conditions. X-ray diffraction(XRD) was used to establish the characteristic spectra of calcined Magnetitum, and methods such as similarity evaluation, cluster analysis, and orthogonal partial least squares-discriminant analysis(OPLS-DA) were used to evaluate the quality of the spectra. The optimized calcined Magnetitum preparation process was found to be calcination at 750 ℃ for 1 h, with a laying thickness of 4 cm, a particle size of 0.4-0.8 cm, and one vinegar quenching cycle(Magnetitum-vinegar ratio 10∶3), which was stable and feasible. The XRD characteristic spectra analysis method, featuring 9 common peaks as fingerprint information, was established. The average correlation coefficient ranged from 0.839 5-0.988 1, and the average angle cosine ranged from 0.914 4 to 0.995 6, indicating good similarity. Cluster analysis results showed that Magnetitum and calcined Magnetitum could be grouped together, with similar compositions. OPLS-DA discriminant analysis identified three key characteristic peaks, with Fe_2O_3 being the distinguishing component between the two. The final optimized processing method is stable and feasible, and the XRD characteristic spectra of calcined Magnetitum was initially established, providing a reference for subsequent quality control and the formulation of quality standards for calcined Magnetitum.
X-Ray Diffraction/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Quality Control
;
Particle Size
10.Optimal harvesting period of cultivated Notopterygium incisum based on HPLC specific chromatogram combined with chemometrics and entropy weight-gray correlation analysis.
Jing-Cheng WANG ; Hong-Bing SUN ; Teng LIU ; Wen-Tao ZHU ; Hong-Lan WANG ; Yi ZHOU ; Wei-Yan WANG ; Ping YANG ; Shun-Yuan JIANG
China Journal of Chinese Materia Medica 2025;50(14):3878-3886
To determine the optimal cultivation duration and harvest period for cultivated Notopterygium incisum and promote its industrial development, this study established a characteristic chromatographic profile of cultivated N. incisum and employed chemometrics combined with entropy-weighted grey correlation analysis to assess differences in agronomic traits and quality indicators across different cultivation years and harvest periods. By comparing with reference substances, ten common peaks were identified, including chlorogenic acid, p-coumaric acid, ferulic acid, marmesinin, nodakenin, isochlorogenic acid B, notopterol, phenethyl ferulate, isoimperatorin, and falcarindiol. The similarity between the characteristic chromatographic profiles of N. incisum at different cultivation years and the reference profile was all above 0.932. Principal component analysis(PCA) and orthogonal partial least squares discriminant analysis(OPLS-DA) revealed that the quality of 1-to 3-year-old cultivated N. incisum was highly dispersed and unstable, whereas the quality of 4-year-old cultivated N. incisum remained relatively stable across different harvest periods. This suggests that the accumulation of relevant compounds in the medicinal material had reached a plateau, confirming that the optimal cultivation period for N. incisum is four years. Entropy-weighted grey correlation analysis indicated that the quality of 4-year-old cultivated N. incisum across different harvest periods ranked from highest to lowest as follows: November, December, October, August, July, and September, demonstrating that November is the optimal harvest time. The findings of this study establish the suitable cultivation duration and optimal harvest period for N. incisum, providing a scientific basis for cultivation guidance and quality standardization.
Chromatography, High Pressure Liquid/methods*
;
Apiaceae/chemistry*
;
Entropy
;
Chemometrics/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Principal Component Analysis
;
Quality Control

Result Analysis
Print
Save
E-mail