1.Disease burden of chronic kidney disease attributable to high BMI in China and trend prediction in 1992-2021
Hong LIU ; Guimao YANG ; Yan SUI ; Xia ZHANG ; Xuebing CHENG ; Yaxing WU ; Xu GUO ; Yanfeng REN
Journal of Public Health and Preventive Medicine 2025;36(1):27-31
Objective To analyze the disease burden of chronic kidney diseases (CKD) attributed to high body mass index (BMI) in China from 1992 to 2021 and predict the disease burden for the next decade, and to provide evidence for the prevention and treatment of CKD. Methods Using the Global Burden of Disease (GBD) database and the Joinpoint model, the average annual percentage rate change (AAPC) of the mortality rate and disability-adjusted life year (DALY) rate was calculated to describe and analyze the CKD disease burden attributed to high BMI in China from 1992 to 2021. The ARIMA model was employed to predict and analyze the change trend of the CKD disease burden. Results From 1992 to 2021, the mortality rate and DALY rate attributed to high BMI-induced chronic kidney disease showed an upward trend. Compared to 1992, the attributed number of deaths increased by 324.38%, and DALYs increased by 268.56%; the mortality rate increased by 64.00%, and the DALY rate grew by 51.62%. From 1992 to 2021, the mortality rate and DALY rate for males were lower than those for females, but the growth rate for males exceeded that of females. From 1992 to 2021, the mortality rate and DALY rate of chronic kidney disease attributed to high BMI in China increased with age. The average annual change rate of chronic kidney disease attributed to high BMI in China from 1992 to 2021 (mortality rate: 1.40 per 100,000 (95% CI: 1.04–1.76), DALY rate: 1.43 per 100 000 (95% CI: 1.17–1.70)) was higher than thHuaiyin Normal University, Huai'anher social demographic index (SDI) regions. The ARIMA model predicted that the age-standardized mortality rate increased from 2.91 per 100 000 in 2022 to 3.05 per 100 000 in 2026, and the age-standardized DALY rate increased from 69.65 per 100 000 in 2022 to 73.58 per 100 000 in 2026. Conclusion Chronic kidney disease attributed to high BMI in China is on the rise, and it will continue to grow in the future. The focus of CKD prevention and control should be on males and the elderly, while active measures should be taken to reduce the occurrence and progression of chronic kidney disease.
2.Translational Research of Electromagnetic Fields on Diseases Related With Bone Remodeling: Review and Prospects
Peng SHANG ; Jun-Yu LIU ; Sheng-Hang WANG ; Jian-Cheng YANG ; Zhe-Yuan ZHANG ; An-Lin LI ; Hao ZHANG ; Yu-Hong ZENG
Progress in Biochemistry and Biophysics 2025;52(2):439-455
Electromagnetic fields can regulate the fundamental biological processes involved in bone remodeling. As a non-invasive physical therapy, electromagnetic fields with specific parameters have demonstrated therapeutic effects on bone remodeling diseases, such as fractures and osteoporosis. Electromagnetic fields can be generated by the movement of charged particles or induced by varying currents. Based on whether the strength and direction of the electric field change over time, electromagnetic fields can be classified into static and time-varying fields. The treatment of bone remodeling diseases with static magnetic fields primarily focuses on fractures, often using magnetic splints to immobilize the fracture site while studying the effects of static magnetic fields on bone healing. However, there has been relatively little research on the prevention and treatment of osteoporosis using static magnetic fields. Pulsed electromagnetic fields, a type of time-varying field, have been widely used in clinical studies for treating fractures, osteoporosis, and non-union. However, current clinical applications are limited to low-frequency, and research on the relationship between frequency and biological effects remains insufficient. We believe that different types of electromagnetic fields acting on bone can induce various “secondary physical quantities”, such as magnetism, force, electricity, acoustics, and thermal energy, which can stimulate bone cells either individually or simultaneously. Bone cells possess specific electromagnetic properties, and in a static magnetic field, the presence of a magnetic field gradient can exert a certain magnetism on the bone tissue, leading to observable effects. In a time-varying magnetic field, the charged particles within the bone experience varying Lorentz forces, causing vibrations and generating acoustic effects. Additionally, as the frequency of the time-varying field increases, induced currents or potentials can be generated within the bone, leading to electrical effects. When the frequency and power exceed a certain threshold, electromagnetic energy can be converted into thermal energy, producing thermal effects. In summary, external electromagnetic fields with different characteristics can generate multiple physical quantities within biological tissues, such as magnetic, electric, mechanical, acoustic, and thermal effects. These physical quantities may also interact and couple with each other, stimulating the biological tissues in a combined or composite manner, thereby producing biological effects. This understanding is key to elucidating the electromagnetic mechanisms of how electromagnetic fields influence biological tissues. In the study of electromagnetic fields for bone remodeling diseases, attention should be paid to the biological effects of bone remodeling under different electromagnetic wave characteristics. This includes exploring innovative electromagnetic source technologies applicable to bone remodeling, identifying safe and effective electromagnetic field parameters, and combining basic research with technological invention to develop scientifically grounded, advanced key technologies for innovative electromagnetic treatment devices targeting bone remodeling diseases. In conclusion, electromagnetic fields and multiple physical factors have the potential to prevent and treat bone remodeling diseases, and have significant application prospects.
3.Epidemiology and management patterns of chronic thromboembolic pulmonary hypertension in China.
Wanmu XIE ; Yongpei YU ; Qiang HUANG ; Xiaoyan YAN ; Yuanhua YANG ; Changming XIONG ; Zhihong LIU ; Jun WAN ; Sugang GONG ; Lan WANG ; Cheng HONG ; Chenghong LI ; Jean-François RICHARD ; Yanhua WU ; Jun ZOU ; Chen YAO ; Zhenguo ZHAI
Chinese Medical Journal 2025;138(8):1000-1002
4.Identification of novel pathogenic variants in genes related to pancreatic β cell function: A multi-center study in Chinese with young-onset diabetes.
Fan YU ; Yinfang TU ; Yanfang ZHANG ; Tianwei GU ; Haoyong YU ; Xiangyu MENG ; Si CHEN ; Fengjing LIU ; Ke HUANG ; Tianhao BA ; Siqian GONG ; Danfeng PENG ; Dandan YAN ; Xiangnan FANG ; Tongyu WANG ; Yang HUA ; Xianghui CHEN ; Hongli CHEN ; Jie XU ; Rong ZHANG ; Linong JI ; Yan BI ; Xueyao HAN ; Hong ZHANG ; Cheng HU
Chinese Medical Journal 2025;138(9):1129-1131
5.One-year seedling cultivation technology and seed germination-promoting mechanism by warm water soaking of Polygonatum kingianum var. grandifolium.
Ke FU ; Jian-Qing ZHOU ; Zhi-Wei FAN ; Mei-Sen YANG ; Ya-Qun CHENG ; Yan ZHU ; Yan SHI ; Jin-Ping SI ; Dong-Hong CHEN
China Journal of Chinese Materia Medica 2025;50(4):1022-1030
Polygonati Rhizoma demonstrates significant potential for addressing both chronic and hidden hunger. The supply of high-quality seedlings is a primary factor influencing the development of the Polygonati Rhizoma industry. Warm water soaking is often used in agriculture to promote the rapid germination of seeds, while its application and molecular mechanism in Polygonati Rhizoma have not been reported. To rapidly obtain high-quality seedlings, this study treated Polygonatum kingianum var. grandifolium seeds with sand storage at low temperatures, warm water soaking, and cultivation temperature gradients. The results showed that the culture at 25 ℃ or sand storage at 4 ℃ for 2 months rapidly broke the seed dormancy of P. kingianum var. grandifolium, while the culture at 20 ℃ or sand storage at 4 ℃ for 1 month failed to break the seed dormancy. Soaking seeds in 60 ℃ warm water further increased the germination rate, germination potential, and germination index. Specifically, the seeds soaked at 60 ℃ and cultured at 25 ℃ without sand storage treatment(Aa25) achieved a germination rate of 78. 67%±1. 53% on day 42 and 83. 40%±4. 63% on day 77. The seeds pretreated with sand storage at 4 ℃ for 2 months, soaked in 60 ℃ water, and then cultured at 25 ℃ achieved a germination rate comparable to that of Aa25 on day 77. Transcriptomic analysis indicated that warm water soaking might promote germination by triggering reactive oxygen species( ROS), inducing the expression of heat shock factors( HSFs) and heat shock proteins( HSPs), which accelerated DNA replication, transcript maturation, translation, and processing, thereby facilitating the accumulation and turnover of genetic materials. According to the results of indoor controlled experiments and field practices, maintaining a germination and seedling cultivation environment at approximately 25 ℃ was crucial for the one-year seedling cultivation of P. kingianum var. grandifolium.
Germination
;
Seedlings/genetics*
;
Water/metabolism*
;
Seeds/metabolism*
;
Polygonatum/genetics*
;
Temperature
;
Plant Proteins/genetics*
;
Plant Dormancy
6.Biosynthesis of ganoderic acid and its derivatives.
Hong-Yan SONG ; Wan YANG ; Li-Wei LIU ; Xia-Ying CHENG ; Dong-Feng YANG ; Zong-Qi YANG
China Journal of Chinese Materia Medica 2025;50(5):1155-1163
Ganoderic acid is a class of lanostane-type triterpenoids found in Ganoderma species, and is one of the most important pharmacologically active components in G. lucidum, exhibiting antioxidant, anti-neuropsychiatric, anti-tumor, and immune-enhancing properties. The content of ganoderic acid in G. lucidum is very low, and the traditional extraction process is complex, yielding minimal amounts at high cost. The biosynthetic pathway of G. lucidum triterpenoids(GLTs), including the synthesis of different structural forms of ganoderic acid from lanosterol, as well as the molecular regulatory mechanisms involving key regulatory enzyme genes and their functions, are not yet fully understood. With the continuous development of synthetic biology technologies, there has been a deeper understanding of the biosynthesis and metabolic regulation pathways of ganoderic acid and its derivatives at the molecular level. Research has explored the key regulatory enzyme genes related to ganoderic acid biosynthesis and their functions. Moreover, through the optimization of synthetic biology and culture conditions, large-scale production and preparation of GLTs at the cellular level have been achieved. This paper reviews and analyzes the latest research progress on the biosynthesis pathways and metabolic regulation of GLTs, focusing on the configuration of ganoderic acid and its derivatives, the biosynthetic pathways, key enzyme genes, transcription factors related to ganoderic acid biosynthesis, signal transduction mechanisms, and factors affecting triterpenoid biotransformation. This review is expected to provide a theoretical basis and technical reference for improving the efficient production of triterpenoid pharmacological components and the exploitation and utilization of G. lucidum resources.
Triterpenes/chemistry*
;
Reishi/chemistry*
;
Biosynthetic Pathways
;
Lanosterol
7.Rhodiolae Crenulatae Radix et Rhizoma protects brain microvascular endothelial cells from ischemia and hypoxia injury by regulating PI3K/AKT/GSK3β pathway.
Li TANG ; Qiu-Yue YANG ; Hong-Fa CHENG ; Ya-Hui XIE ; Qiu-Xia ZHANG
China Journal of Chinese Materia Medica 2025;50(11):3127-3136
This study elucidates the mechanism of Rhodiolae Crenulatae Radix et Rhizoma(RCRR) in protecting brain microvascular endothelial cells from oxygen-glucose deprivation(OGD) injury and reveals the modern pharmacological mechanism of RCRR's traditional use in nourishing Qi and promoting blood circulation to protect endothelial cells. The scratch assay was employed to assess the migratory capacity of endothelial cells. Immunofluorescence and Western blot techniques were employed to assess the protein expression of tight junction proteins zonula occludens-1(ZO-1), occludin, claudin-5, and proteins of the phosphoinositide 3-kinase(PI3K)/protein kinase B(AKT)/glycogen synthase kinase-3beta(GSK3β) pathway. The results demonstrated that 63 bioactive components and 125 potential core targets of RCRR were identified from the ETCM, TCMBank, and SwissTargetPrediction databases, as well as from the literature. A total of 1 708 brain microvascular endothelial cell-related targets were identified from the GeneCards and OMIM databases, and 52 targets were obtained by intersecting drug components with cell targets. The protein-protein interaction(PPI) network analysis revealed that AKT1, epidermal growth factor receptor(EGFR), matrix metalloproteinase 9(MMP9), estrogen receptor 1(ESR1), proto-oncogene tyrosine-protein kinase(SRC), peroxisome proliferator-activated receptor gamma(PPARG), GSK3β, and matrix metalloproteinase 2(MMP2) were considered hub genes. The KEGG enrichment analysis identified the PI3K/AKT pathway as the primary signaling pathway. Cell experiments demonstrated that RCRR-containing serum could enhance the migratory capacity of brain microvascular endothelial cells and the expression of tight junction proteins following OGD injury, which may be associated with the downregulation of the PI3K/AKT/GSK3β pathway. This study elucidates the pharmacological mechanism of RCRR in protecting brain microvascular endothelial cells through network pharmacology, characterized by multiple components and targets. These findings were validated through in vitro experiments and provide important ideas and references for further research into the molecular mechanisms of RCRR in protecting brain microvascular endothelial cells.
Endothelial Cells/cytology*
;
Glycogen Synthase Kinase 3 beta/genetics*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Drugs, Chinese Herbal/pharmacology*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Signal Transduction/drug effects*
;
Brain/metabolism*
;
Humans
;
Animals
;
Rhizome/chemistry*
;
Microvessels/metabolism*
;
Brain Ischemia/drug therapy*
8.Optimal harvesting period of cultivated Notopterygium incisum based on HPLC specific chromatogram combined with chemometrics and entropy weight-gray correlation analysis.
Jing-Cheng WANG ; Hong-Bing SUN ; Teng LIU ; Wen-Tao ZHU ; Hong-Lan WANG ; Yi ZHOU ; Wei-Yan WANG ; Ping YANG ; Shun-Yuan JIANG
China Journal of Chinese Materia Medica 2025;50(14):3878-3886
To determine the optimal cultivation duration and harvest period for cultivated Notopterygium incisum and promote its industrial development, this study established a characteristic chromatographic profile of cultivated N. incisum and employed chemometrics combined with entropy-weighted grey correlation analysis to assess differences in agronomic traits and quality indicators across different cultivation years and harvest periods. By comparing with reference substances, ten common peaks were identified, including chlorogenic acid, p-coumaric acid, ferulic acid, marmesinin, nodakenin, isochlorogenic acid B, notopterol, phenethyl ferulate, isoimperatorin, and falcarindiol. The similarity between the characteristic chromatographic profiles of N. incisum at different cultivation years and the reference profile was all above 0.932. Principal component analysis(PCA) and orthogonal partial least squares discriminant analysis(OPLS-DA) revealed that the quality of 1-to 3-year-old cultivated N. incisum was highly dispersed and unstable, whereas the quality of 4-year-old cultivated N. incisum remained relatively stable across different harvest periods. This suggests that the accumulation of relevant compounds in the medicinal material had reached a plateau, confirming that the optimal cultivation period for N. incisum is four years. Entropy-weighted grey correlation analysis indicated that the quality of 4-year-old cultivated N. incisum across different harvest periods ranked from highest to lowest as follows: November, December, October, August, July, and September, demonstrating that November is the optimal harvest time. The findings of this study establish the suitable cultivation duration and optimal harvest period for N. incisum, providing a scientific basis for cultivation guidance and quality standardization.
Chromatography, High Pressure Liquid/methods*
;
Apiaceae/chemistry*
;
Entropy
;
Chemometrics/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Principal Component Analysis
;
Quality Control
9.Effect of medicinal parts and harvest seasons on nature-flavor correlation of plant-based Chinese materia medica.
Qi-Ao MA ; Guang YANG ; Hong-Chao WANG ; Ying LI ; Meng CHENG ; Tie-Lin WANG ; Kai SUN ; Xiu-Lian CHI
China Journal of Chinese Materia Medica 2025;50(15):4228-4237
This study selected 6 529 plant-based Chinese materia medica(PCMM) from Chinese Materia Medica as research subjects and applied a random permutation test to explore the overall correlation characteristics between nature and flavor, as well as the correlation characteristics after distinguishing different medicinal parts and harvest seasons. The results showed that the overall correlation characteristics between nature and flavor in PCMM were significantly associated in the following pairs: cold and bitter, cool and bitter, cool and astringent, cool and light, neutral and sweet, neutral and astringent, neutral and light, neutral and sour, hot and pungent, and warm and pungent. When analyzing the data by distinguishing medicinal parts and/or harvest seasons, new correlation patterns emerged, characterized by the disappearance of some significant correlations and the emergence of new ones. When analyzing by medicinal parts alone, significant correlations were found in the following cases: cold and light in leaves, cold and salty in barks, cool and sweet in fruits and seeds, neutral and pungent in whole herbs, neutral and salty in stems, and warm and salty in flowers. However, no significant correlations were found between cool and bitter in stems and other types of herbs, cool and astringent in fruits, seeds, flowers, and other types of herbs, cool and light in leaves, fruits, seeds, barks, flowers and other types of herbs, neutral and sweet in barks, neutral and astringent in whole herbs and stems, neutral and light in leaves, fruits, seeds, and flowers, neutral and sour in whole herbs, stems, barks, flowers, and other types of herbs, and hot and pungent in whole herbs, stems, flowers, and other types of herbs. When analyzing by harvest season alone, significant correlations were found in the following cases: cold and salty, and cool and sour in herbs harvested in winter, and neutral and salty in herbs harvested year-round. However, no significant correlation was found between cool and light in herbs harvested in winter. When considering both medicinal parts and harvest seasons, compared to the independent influence of medicinal parts, 14 new significant correlations emerged(e.g., the correlation between cool and bitter in stems harvested in spring), while 53 previously significant correlations disappeared(e.g., the correlation between cool and bitter in barks harvested in summer). Compared to the independent influence of harvest seasons, 11 new significant correlations appeared(e.g., the correlation between cold and light in barks harvested in autumn), while 50 previously significant correlations disappeared(e.g., the correlation between hot and pungent in leaves harvested in winter). This study is the first to reveal the influence of medicinal parts and harvest seasons on the correlation between nature and flavor in PCMM, which highlights that these two factors can interact and jointly affect nature-flavor correlations. Further research is needed to explore the underlying mechanisms. This study provides a deeper understanding of the inherent scientific connotations of herbal properties and offers a theoretical foundation for the cultivation and harvesting of PCMM.
Seasons
;
Plants, Medicinal/growth & development*
;
Drugs, Chinese Herbal/chemistry*
;
Taste
10.Mechanism of Chaijin Jieyu Anshen Formula in regulating synaptic damage in nucleus accumbens neurons of rats with insomnia complicated with depression through TREM2/C1q axis.
Ying-Juan TANG ; Jia-Cheng DAI ; Song YANG ; Xiao-Shi YU ; Yao ZHANG ; Hai-Long SU ; Zhi-Yuan LIU ; Zi-Xuan XIANG ; Jun-Cheng LIU ; Hai-Xia HE ; Jian LIU ; Yuan-Shan HAN ; Yu-Hong WANG ; Man-Shu ZOU
China Journal of Chinese Materia Medica 2025;50(16):4538-4545
This study aims to investigate the effect of Chaijin Jieyu Anshen Formula on the neuroinflammation of rats with insomnia complicated with depression through the regulation of triggering receptor expressed on myeloid cells 2(TREM2)/complement protein C1q signaling pathway. Rats were randomly divided into a normal group, a model group, a positive drug group, as well as a high, medium, and low-dose groups of Chaijin Jieyu Anshen Formula, with 10 rats in each group. Except for the normal group, the other groups were injected with p-chlorophenylalanine and exposed to chronic unpredictable mild stress to establish the rat model of insomnia complicated with depression. The sucrose preference experiment, open field experiment, and water maze test were performed to evaluate the depression in rats. Enzyme-linked immunosorbent assay was employed to detect serum 5-hydroxytryptamine(5-HT), dopamine(DA), and norepinephrine(NE) levels. Hematoxylin and eosin staining and Nissl staining were used to observe the damage in nucleus accumbens neurons. Western blot and immunofluorescence were performed to detect TREM2, C1q, postsynaptic density 95(PSD-95), and synaptophysin 1(SYN1) expressions in rat nucleus accumbens, respectively. Golgi-Cox staining was utilized to observe the synaptic spine density of nucleus accumbens neurons. The results show that, compared with the model group, Chaijin Jieyu Anshen Formula can significantly increase the sucrose preference as well as the distance and number of voluntary activities, shorten the immobility time in forced swimming test and the successful incubation period of positioning navigation, and prolong the stay time of space exploration in the target quadrant test. The serum 5-HT, DA, and NE contents in the model group are significantly lower than those in the normal group, with the above contents significantly increased after the intervention of Chaijin Jieyu Anshen Formula. In addition, Chaijin Jieyu Anshen Formula can alleviate pathological damages such as swelling and loose arrangement of tissue cells in the nucleus accumbens, while increasing the Nissl body numbers. Chaijin Jieyu Anshen Formula can improve synaptic damage in the nucleus accumbens and increase the synaptic spine density. Compared to the normal group, the expression of C1q protein was significantly higher in the model group, while the expression of TREM2 protein was significantly lower. Compared to the model group, the intervention with Chaijin Jieyu Anshen Formula significantly downregulated the expression of C1q protein and significantly upregulated the expression of TREM2. Compared with the model group, the PSD-95 and SYN1 fluorescence intensity is significantly increased in the groups receiving different doses of Chaijin Jieyu Anshen Formula. In summary, Chaijin Jieyu Anshen Formula can reduce the C1q protein expression, relieve the TREM2 inhibition, and promote the synapse-related proteins PSD-95 and SNY1 expression. Chaijin Jieyu Anshen Formula improves synaptic injury of the nucleus accumbens neurons, thereby treating insomnia complicated with depression.
Animals
;
Male
;
Rats
;
Nucleus Accumbens/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Depression/complications*
;
Membrane Glycoproteins/genetics*
;
Rats, Sprague-Dawley
;
Sleep Initiation and Maintenance Disorders/complications*
;
Neurons/metabolism*
;
Receptors, Immunologic/genetics*
;
Signal Transduction/drug effects*
;
Synapses/metabolism*


Result Analysis
Print
Save
E-mail