1.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
2.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
3.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
4.Four Weeks of HIIT Modulates Lactate-mediated Synaptic Plasticity to Improve Depressive-like Behavior in CUMS Rats
Yu-Mei HAN ; Zi-Wei ZHANG ; Jia-Ren LIANG ; Chun-Hui BAO ; Jun-Sheng TIAN ; Shi ZHOU ; Huan XIANG ; Yong-Hong YANG
Progress in Biochemistry and Biophysics 2025;52(6):1499-1510
ObjectiveThis study aimed to investigate the effects of 4-week high-intensity interval training (HIIT) on synaptic plasticity in the prefrontal cortex (PFC) of rats exposed to chronic unpredictable mild stress (CUMS), and to explore its potential mechanisms. MethodsA total of 48 male Sprague-Dawley rats were randomly divided into 4 groups: control (C), model (M), control plus HIIT (HC), and model plus HIIT (HM). Rats in groups M and HM underwent 8 weeks of CUMS to establish depression-like behaviors, while groups HC and HM received HIIT intervention beginning from the 5th week for 4 consecutive weeks. The HIIT protocol consisted of repeated intervals of 3 min at high speed (85%-90% maximal training speed, Smax) alternated with one minute at low speed (50%-55% Smax), with 3 to 5 sets per session, conducted 5 d per week. Behavioral assessments and tail-vein blood lactate levels were measured at the end of the 4th and 8th weeks. After the intervention, rat PFC tissues were collected for Golgi staining to analyze synaptic morphology. Enzyme-linked immunosorbent assays (ELISA) were employed to detect brain-derived neurotrophic factor (BDNF), monocarboxylate transporter 1 (MCT1), lactate, and glutamate levels in the PFC, as well as serotonin (5-HT) levels in serum. Additionally, Western blot analysis was conducted to quantify the expression of synaptic plasticity-related proteins, including c-Fos, activity-regulated cytoskeleton-associated protein (Arc), and N-methyl-D-aspartate receptor 1 (NMDAR1). ResultsCompared to the control group (C), the CUMS-exposed rats (group M) exhibited significant reductions in sucrose preference rates, number of grid crossings, frequency of upright postures, and entries into and duration spent in open arms of the elevated plus maze, indicating marked depressive-like behaviors. Additionally, the group M showed significantly reduced dendritic spine density in the PFC, along with elevated levels of c-Fos, Arc, NMDAR1 protein expression, and increased concentrations of lactate and glutamate. Conversely, BDNF and MCT1 contents in the PFC and 5-HT levels in serum were significantly decreased. Following HIIT intervention, rats in the group HM displayed considerable improvement in behavioral indicators compared with the group M, accompanied by significant elevations in PFC MCT1 and lactate concentrations. Furthermore, HIIT notably normalized the expression levels of c-Fos, Arc, NMDAR1, as well as glutamate and BDNF contents in the PFC. Synaptic spine density also exhibited significant recovery. ConclusionFour weeks of HIIT intervention may alleviate depressive-like behaviors in CUMS rats by increasing lactate levels and reducing glutamate concentration in the PFC, thereby downregulating the overexpression of NMDAR, attenuating excitotoxicity, and enhancing synaptic plasticity.
5.Conserved translational control in cardiac hypertrophy revealed by ribosome profiling.
Bao-Sen WANG ; Jian LYU ; Hong-Chao ZHAN ; Yu FANG ; Qiu-Xiao GUO ; Jun-Mei WANG ; Jia-Jie LI ; An-Qi XU ; Xiao MA ; Ning-Ning GUO ; Hong LI ; Zhi-Hua WANG
Acta Physiologica Sinica 2025;77(5):757-774
A primary hallmark of pathological cardiac hypertrophy is excess protein synthesis due to enhanced translational activity. However, regulatory mechanisms at the translational level under cardiac stress remain poorly understood. Here we examined the translational regulations in a mouse cardiac hypertrophy model induced by transaortic constriction (TAC) and explored the conservative networks versus the translatome pattern in human dilated cardiomyopathy (DCM). The results showed that the heart weight to body weight ratio was significantly elevated, and the ejection fraction and fractional shortening significantly decreased 8 weeks after TAC. Puromycin incorporation assay showed that TAC significantly increased protein synthesis rate in the left ventricle. RNA-seq revealed 1,632 differentially expressed genes showing functional enrichment in pathways including extracellular matrix remodeling, metabolic processes, and signaling cascades associated with pathological cardiomyocyte growth. When combined with ribosome profiling analysis, we revealed that translation efficiency (TE) of 1,495 genes was enhanced, while the TE of 933 genes was inhibited following TAC. In DCM patients, 1,354 genes were upregulated versus 1,213 genes were downregulated at the translation level. Although the majority of the genes were not shared between mouse and human, we identified 93 genes, including Nos3, Kcnj8, Adcy4, Itpr1, Fasn, Scd1, etc., with highly conserved translational regulations. These genes were remarkably associated with myocardial function, signal transduction, and energy metabolism, particularly related to cGMP-PKG signaling and fatty acid metabolism. Motif analysis revealed enriched regulatory elements in the 5' untranslated regions (5'UTRs) of transcripts with differential TE, which exhibited strong cross-species sequence conservation. Our study revealed novel regulatory mechanisms at the translational level in cardiac hypertrophy and identified conserved translation-sensitive targets with potential applications to treat cardiac hypertrophy and heart failure in the clinic.
Animals
;
Humans
;
Cardiomegaly/physiopathology*
;
Ribosomes/physiology*
;
Protein Biosynthesis/physiology*
;
Mice
;
Cardiomyopathy, Dilated/genetics*
;
Ribosome Profiling
6.Research progress on transcription factors and regulatory proteins of Salvia miltiorrhiza.
Wen XU ; Mei TIAN ; Ye SHEN ; Juan GUO ; Bao-Long JIN ; Guang-Hong CUI
China Journal of Chinese Materia Medica 2025;50(1):58-70
Salvia miltiorrhiza is a perennial herb of the genus Salvia(Lamiaceae). As one of the earliest medicinal plants to undergo molecular biology research, it has gradually become a model plant for molecular biology of medicinal plants. With the gradual analysis of the genome of S. miltiorrhiza and the biosynthetic pathways of its main active components tanshinone and salvianolic acids, the transcriptional regulation mediated by transcription factors and related regulatory proteins has gradually become a new research focus. Due to the lack of scientific and unified naming of transcription factors and different research indexes in different literature, this paper systematically sorted out the transcription factors in different literature with the genomes of DSS3 from selfing for three generations and bh2-7 from selfing for six generations as reference. In total, 73 transcription factors and related regulatory proteins belonging to 13 gene families were identified. The effects of overexpression or gene silencing experiments on tanshinone and salvianolic acids were also analyzed. This study unified the identified transcription factors, which laid a foundation for further constructing the regulatory networks of secondary metabolites and insect or stress resistance and improving the quality of medicinal materials by using global transcriptional regulation engineering.
Salvia miltiorrhiza/chemistry*
;
Plant Proteins/metabolism*
;
Gene Expression Regulation, Plant
;
Transcription Factors/metabolism*
;
Abietanes/metabolism*
7.Effects of understory environmental factors on understory planting of medicinal plants.
Ding-Mei WEN ; Hong-Biao ZHANG ; Feng-Yuan QIN ; Chao-Qun XU ; Dou-Dou LI ; Bao-Lin GUO
China Journal of Chinese Materia Medica 2025;50(5):1164-1171
Understory planting of medicinal plants is a new planting mode that connects Chinese herbal medicine(CHM) with forest resources.The complex and variable understory environmental factors will inevitably affect the yield and quality of understory CHM.This research summarized the research progress on understory planting of medicinal plants based on forest types and environmental factors within the forest from the perspectives of understory light, air temperature and humidity, soil characteristics, and the interaction between crops within the forest.The results showed that the complex and variable light, temperature and humidity, and soil factors(such as fertility, acidity and alkalinity, and microorganisms) under the forest could affect the yield and quality of medicinal plants to varying degrees through physiological activities such as photosynthesis and respiration, resulting in a significant increase or decrease in yield and quality compared to open field cultivation.In addition, the competition or mutual benefit between different crops within the forest could lead to differences in the yield and quality of understory medicinal plants compared to open field cultivation.A reasonable combination of planting could achieve resource sharing and complementary advantages.Therefore, conducting systematic research on the effects of understory environmental factors on the yield and content of medicinal plants with different growth and development characteristics can provide theoretical guidance and technical references for formulating comprehensive strategies for understory planting of medicinal plants, such as selecting suitable medicinal plant varieties, optimizing planting density, and conducting reasonable forest management, thus contributing to the sustainable development and ecological protection of CHM.
Plants, Medicinal/growth & development*
;
Forests
;
Soil/chemistry*
;
Environment
;
Ecosystem
;
Temperature
8.The Efficacy and Safety of Modified Thiotepa-Based Conditioning Followed by Autologous Stem Cell Transplantation in Primary CNS Lymphomas.
Yan LI ; Ping YANG ; Fang BAO ; Sen LI ; Lan MA ; Fei DONG ; Ji-Jun WANG ; Hong-Mei JING
Journal of Experimental Hematology 2025;33(5):1435-1442
OBJECTIVE:
To explore and evaluate the efficacy and safety of a modified thiotepa-based conditioning regimen combined with autologous hematopoietic stem cell transplantation (ASCT) for the treatment of primary central nervous system lymphoma (PCNSL).
METHODS:
In a retrospective, single center, single arm study, we collected data of 28 patients with PCNSL who underwent high-dose chemotherapy followed by autologous stem cell transplantation (HDC-ASCT) at our center from March 2021 to December 2024. The clinical characteristics of the patients, the conditioning regimen details, treatment-related toxicities and adverse reactions, post-transplant disease remission status, and survival outcomes were analyzed.
RESULTS:
A total of 28 patients were included. Among them, 19 patients received ASCT as first-line consolidation therapy in complete response (CR) or partial response (PR) status, and 9 patients with relapsed/refractory disease underwent salvage ASCT. The median time to neutrophil engraftment was 9 days (range: 5-11 days), and the median time to platelet engraftment was 10 days (range: 6-13 days). All patients achieved CR at the initial efficacy evaluation post-ASCT. The main complications during the transplantation period were febrile neutropenia (26 cases) and grade 3 diarrhea (9 cases). No transplantation-related mortality occurred. Post-ASCT, 19 patients received maintenance therapy, which was demonstrated to be safe and effective. Three patients relapse, and one patient died. The median progression-free survival (PFS) and overall survival (OS) of patients were not reached. The estimated 1-year and 2-year cumulative PFS rates were 88.4% and 66.3%, respectively, while the 1-year and 2-year OS rates were both 94.1%.
CONCLUSION
The modified thiotepa-based conditioning regimen combined with ASCT is safe and effective for the treatment of PCNSL.
Humans
;
Thiotepa/therapeutic use*
;
Retrospective Studies
;
Transplantation, Autologous
;
Transplantation Conditioning/methods*
;
Central Nervous System Neoplasms/therapy*
;
Hematopoietic Stem Cell Transplantation
;
Female
;
Male
;
Middle Aged
;
Adult
;
Lymphoma/therapy*
;
Treatment Outcome
;
Aged
9.Research Progress in the Function and Regulation of Sirtuin 3 in Sepsis-Related Diseases.
Jun-Jie LI ; Hong MEI ; Xin-Xin LIU ; Kun YU ; Bang-Hai FENG ; Bao FU ; Song QIN
Acta Academiae Medicinae Sinicae 2025;47(4):601-610
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection,with a high mortality rate.Sirtuin 3,a deacetylase within mitochondria,plays an important regulatory role in cellular metabolism,oxidative stress,and inflammatory responses.In recent years,significant progress has been made in the study of the function and regulatory role of sirtuin 3 in sepsis-related diseases.Research has shown that sirtuin 3 can alleviate organ damage caused by sepsis by regulating mitochondrial function,reducing oxidative stress,and inhibiting inflammatory responses.The specific mechanisms include the regulation of mitochondrial bioenergetics,activation of antioxidant enzyme systems,and inhibition of inflammatory mediator expression.In addition,sirtuin 3 plays a protective role in the pathological process of sepsis by interacting with multiple signaling pathways.This article summarizes the functions and regulatory mechanisms of sirtuin 3 in various sepsis-related diseases,aiming to provide new targets and strategies for the prevention and treatment of sepsis in the future.
Sepsis/metabolism*
;
Sirtuin 3/physiology*
;
Humans
;
Animals
;
Oxidative Stress
;
Mitochondria/metabolism*
;
Signal Transduction
10.Diagnostic value of endoscopic ultrasonography for common bile duct microlithiasis
Gang Chen ; Weiping Zhang ; Junjun Bao ; Yang Li ; Qiao Mei ; Jianming Xu ; Rutao Hong
Acta Universitatis Medicinalis Anhui 2025;60(1):147-151
Objective :
To investigate the diagnostic value of linear array endoscopic ultrasonography ( EUS) for common bile duct microlithiasis.
Methods :
Data of patients who attended in the hospital and diagnosed as common bile duct microlithiasis and biliary sludge by EUS were selected.A total of 85 patients with magnetic resonance cholangiopancreatography ( MRCP) examination and ERCP treatment during hospitalization were enrolled.The results of endoscopic retrograde cholangiopancreatography / endoscopic sphincterotomy ( ERCP / EST) were the gold standard for diagnosis.The results of EUS,MRCP,and diagnostic ERCP were compared with the gold standard, and the sensitivity,specificity,positive predictive value,negative predictive value,and diagnostic accuracy of the three methods were calculated,respectively.The chi-square test was used for comparison of the above indices.
Results :
Of all 85 patients,63 had positive EUS results,among whom 5 had false positive results; 22 had negative EUS results,among whom 1 had false negative results.Of all 85 patients,49 had positive MRCP results,among whom 4 had false positive results; 36 had negative MRCP results,among whom 14 had false negative results.Of all 85 patients,59 had positive diagnostic ERCP results,among whom 10 had false positive results; 26 had negative diagnostic ERCP results,among whom 10 had false negative results.The sensitivity,specificity,positive predictive value( PPV) ,negative predictive value ( NPV) ,and accuracy of EUS in diagnosing common bile duct microlithia- sis were 98. 3% ,80. 8% ,92. 1% ,95. 4% and 92. 9% ,respectively. For MRCP,these values were 76. 3% , 84. 6% ,91. 8% ,61. 1% and 78. 8% ,respectively.For diagnostic ERCP,these values were 83. 1% ,61. 5% , 83. 1% ,61. 5% and 76. 5% ,respectively.The EUS group had a significantly higher accuracy than the MRCP group ( χ2 = 6. 986,P <0. 05) and diagnostic ERCP group ( χ2 = 8. 900,P <0. 05) .The areas under the ROC curves ( AUC) and 95% CI of EUS group,MRCP group and diagnostic ERCP were 0. 895 ( 95% CI: 0. 802 - 0. 988,P<0. 001) ,0. 804 ( 95% CI: 0. 702 -0. 907,P <0. 001) and 0. 723 ( 95% CI: 0. 598 -0. 848,P = 0. 001) ,respectively.
Conclusion
EUS has a high diagnostic value in the diagnosis of common bile duct microli- thiasis and thus can be used as the preferred examination before therapeutic ERCP.


Result Analysis
Print
Save
E-mail