1.Effects of ropivacaine on GABA-activated currents in isolated dorsal root ganglion neurons in rats.
Yue YANG ; Jun-Qiang SI ; Chao FAN ; Ke-Tao MA ; Hong-Jv CHENG ; Li LI
Chinese Journal of Applied Physiology 2013;29(3):263-266
OBJECTIVETo investigate the effects of ropivacaine on Gamma-aminobutyric acid(GABA)-activated currents in dorsal root ganglion (DRG) neurons in rats and discuss the analgesia mechanism of ropivacaine.
METHODSBy means of using whole-cell patch-clamp technique, to investigate the modulatory effects of ropivacaine on GABA-activated currents (I(GABA)) in acutely isolated dorsal root ganglion neurons.
RESULTS(1) In 48 out of 73DRG cells (65.7%, 48/73), to perfusion ropivacaine bromide (0.1 - 1 000 micromol/L) were sensitive. Which produce in 0 to 380 pA current. (2) The majority of the neurons examined (74.5%, 73/98) were sensitive to GABA. Concentration of 1 - 1 000 micromol/L GABA could activate a concentration-dependent inward current, which manifested obvious desensitization, and the inward currents could be blocked byGABA-receptor selective antagonist of bicuculline (100 micromol/L). (3) After the neurons were treated with ropivacaine (0.1 - 1000 micromol/L) prior to the application of GABA (100 micromol/L) 30 s, GABA currents were obviously increased. Ropivacaine could make dose-response curve of the GABA up, EC50 is 23.46 micromol/L. Ropivacaine shifted the GABA dose-response curve upward and increased the maximum response to the contrast about 153%.
CONCLUSIONThe enhancement of ropivacaine to DRG neurons activation of GABA current, can lead to enhancement of pre-synaptic inhibition at the spinal cord level. This may be one of the reasons for the anesthetic effect and analgesia for ropivacaine in epidural anesthesia.
Amides ; pharmacology ; Animals ; Ganglia, Spinal ; cytology ; physiology ; Membrane Potentials ; drug effects ; Neurons ; cytology ; drug effects ; physiology ; Patch-Clamp Techniques ; Rats ; Rats, Sprague-Dawley ; Receptors, GABA-A ; physiology