1.Quality assessment of guidelines/consensuses on traditional Chinese medicine/integrated traditional Chinese and Western medicine diagnosis and treatment of nonalcoholic fatty liver disease
Ruimin JIAO ; Jingjie ZHAO ; Juanjuan LI ; Wei CHEN ; Chaoru HAN ; Li LI ; Chunjun XU ; Hong YOU
Journal of Clinical Hepatology 2025;41(3):446-452
ObjectiveTo evaluate the methodological quality and reporting quality of published guidelines/consensuses on traditional Chinese medicine (TCM)/integrated traditional Chinese and Western medicine diagnosis and treatment of nonalcoholic fatty liver disease (NAFLD), and to provide a basis for formulating guidelines/consensuses on TCM/integrated traditional Chinese and Western medicine diagnosis and treatment of NAFLD in the future. MethodsDatabases including PubMed, Embase, Web of Science, CNKI, Wanfang Data, and CBM and the websites of China Association of Chinese Medicine and China Association of Integrative Medicine were searched for related articles published up to September 1, 2024. Two clinical researchers independently assessed the methodological quality and reporting quality of the guidelines/consensuses on TCM/integrated traditional Chinese and Western medicine diagnosis and treatment of NAFLD by using Appraisal of Guidelines for Research and Evaluation Ⅱ (AGREE Ⅱ) and Reporting Items for Practice Guidelines in Healthcare (RIGHT). ResultsA total of nine guidelines/consensuses were included after literature screening, with four guidelines and five expert consensuses. The scores of different domains assessed by AGREE Ⅱ for the nine guidelines/consensuses were as follows: scope and purpose (47.1%), stakeholder involvement (41.0%), rigor of development (21.6%), clarity of presentation (40.2%), applicability (19.0%), and editorial independence (19.6%). The recommendation level of the articles was B level (recommended after revision) for four articles and C level (not recommended) for five articles. The RIGHT assessment showed high reporting rates for “Basic Information” and “Background”, while other areas needed to be improved. Currently, there was no international standard for the guidelines/consensuses on TCM/integrated traditional Chinese and Western medicine diagnosis and treatment of NAFLD, and the quality of these guidelines/consensuses needed to be enhanced to ensure comprehensiveness and credibility. ConclusionThere is still potential for improving the quality of guidelines/consensuses on TCM/integrated traditional Chinese and Western medicine diagnosis and treatment of NAFLD, and AGREE Ⅱ and RIGHT checklists should be strictly followed to ensure the fairness, scientific rigor, and transparency of these guidelines/consensuses.
2.Terms Related to The Study of Biomacromolecular Condensates
Ke RUAN ; Xiao-Feng FANG ; Dan LI ; Pi-Long LI ; Yi LIN ; Zheng WANG ; Yun-Yu SHI ; Ming-Jie ZHANG ; Hong ZHANG ; Cong LIU
Progress in Biochemistry and Biophysics 2025;52(4):1027-1035
Biomolecular condensates are formed through phase separation of biomacromolecules such as proteins and RNAs. These condensates exhibit liquid-like properties that can futher transition into more stable material states. They form complex internal structures via multivalent weak interactions, enabling precise spatiotemporal regulations. However, the use of inconsistent and non-standardized terminology has become increasingly problematic, hindering academic exchange and the dissemination of scientific knowledge. Therefore, it is necessary to discuss the terminology related to biomolecular condensates in order to clarify concepts, promote interdisciplinary cooperation, enhance research efficiency, and support the healthy development of this field.
3.Analysis of The Characteristics of Brain Functional Activity in Gross Motor Tasks in Children With Autism Based on Functional Near-infrared Spectroscopy Technology
Wen-Hao ZONG ; Qi LIANG ; Shi-Yu YANG ; Feng-Jiao WANG ; Meng-Zhao WEI ; Hong LEI ; Gui-Jun DONG ; Ke-Feng LI
Progress in Biochemistry and Biophysics 2025;52(8):2146-2162
ObjectiveBased on functional near-infrared spectroscopy (fNIRS), we investigated the brain activity characteristics of gross motor tasks in children with autism spectrum disorder (ASD) and motor dysfunctions (MDs) to provide a theoretical basis for further understanding the mechanism of MDs in children with ASD and designing targeted intervention programs from a central perspective. MethodsAccording to the inclusion and exclusion criteria, 48 children with ASD accompanied by MDs were recruited into the ASD group and 40 children with typically developing (TD) into the TD group. The fNIRS device was used to collect the information of blood oxygen changes in the cortical motor-related brain regions during single-handed bag throwing and tiptoe walking, and the differences in brain activation and functional connectivity between the two groups of children were analyzed from the perspective of brain activation and functional connectivity. ResultsCompared to the TD group, in the object manipulative motor task (one-handed bag throwing), the ASD group showed significantly reduced activation in both left sensorimotor cortex (SMC) and right secondary visual cortex (V2) (P<0.05), whereas the right pre-motor and supplementary motor cortex (PMC&SMA) had significantly higher activation (P<0.01) and showed bilateral brain region activity; in terms of brain functional integration, there was a significant decrease in the strength of brain functional connectivity (P<0.05) and was mainly associated with dorsolateral prefrontal cortex (DLPFC) and V2. In the body stability motor task (tiptoe walking), the ASD group had significantly higher activation in motor-related brain regions such as the DLPFC, SMC, and PMC&SMA (P<0.05) and showed bilateral brain region activity; in terms of brain functional integration, the ASD group had lower strength of brain functional connectivity (P<0.05) and was mainly associated with PMC&SMA and V2. ConclusionChildren with ASD exhibit abnormal brain functional activity characteristics specific to different gross motor tasks in object manipulative and body stability, reflecting insufficient or excessive compensatory activation of local brain regions and impaired cross-regions integration, which may be a potential reason for the poorer gross motor performance of children with ASD, and meanwhile provides data support for further unraveling the mechanisms underlying the occurrence of MDs in the context of ASD and designing targeted intervention programs from a central perspective.
4.Timing, surgical approach, and uterine manipulator use in total hysterectomy after loop electrosurgical excision procedure: Implications for perioperative risks in patients with high-grade squamous intraepithelial lesion.
Xiaoyu HOU ; Junyang LI ; Bingjie MEI ; Jiao PEI ; Mingfeng FENG ; Hong LIU ; Guonan ZHANG ; Dengfeng WANG
Chinese Medical Journal 2025;138(20):2672-2674
5.Effects of resistance combined with aerobic chrono-exercise on common carotid artery elasticity and hemodynamics in young men.
Miao-Xin JIAO ; Bing-Yi SHEN ; Hai-Bin LIU ; Li-Hong CHEN ; Guang-Rui YANG
Acta Physiologica Sinica 2025;77(4):741-751
The purpose of the present study was to investigate the effects of resistance combined with aerobic chrono-exercise on the common carotid artery elasticity and hemodynamics. 24 healthy young men (21.96±0.43 years old) underwent a single acute resistance combined with aerobic exercise intervention at eight time periods (6, 8, 10, 12, 14, 16, 18, and 20 o'clock). The axial flow velocity and diameter waveforms of the common carotid artery were measured, and the hemodynamics were calculated using the classical hemodynamic theory before exercise, immediately after exercise, 10 min and 20 min after exercise. The results showed that during exercise recovery, systolic and mean pressures decreased more markedly after exercise at 8 o'clock (P < 0.05); At 20 min post-exercise, arterial stiffness index and pressure-strain elastic modulus after exercise at 6 o'clock were reduced compared with the resting state, but were significantly elevated after exercise at 20 o'clock (P < 0.05). Immediately after exercise, the pressure rise was higher after exercise at 6 o'clock and the mean wall shear stress was higher after exercise at 20 o'clock (P < 0.05). These results suggest that resistance combined with aerobic chrono-exercise produces different effects on common carotid artery hemodynamics in young men. A single acute session of resistance combined with aerobic exercise at 8 o'clock is more effective in lowering blood pressure. Exercise at 6 o'clock is beneficial to improve arterial elasticity but is not recommended for young male individuals with cardiovascular disease risks because of the excessive increase in blood pressure immediately after exercise. Exercise at 20 o'clock is more effective in improving wall shear stress but is accompanied by elevated arterial stiffness indices and pressure-strain elastic modulus. These results provide a scientific basis for healthy young men in choosing the time of exercise by exploring the common carotid artery elasticity and hemodynamic-related indices.
Humans
;
Male
;
Young Adult
;
Exercise/physiology*
;
Carotid Artery, Common/physiology*
;
Hemodynamics/physiology*
;
Vascular Stiffness/physiology*
;
Elasticity
;
Resistance Training
;
Adult
6.Clinical sub-phenotypes of acute kidney injury in children and their association with prognosis.
Lian FENG ; Min LI ; Zhen JIANG ; Jiao CHEN ; Zhen-Jiang BAI ; Xiao-Zhong LI ; Guo-Ping LU ; Yan-Hong LI
Chinese Journal of Contemporary Pediatrics 2025;27(1):47-54
OBJECTIVES:
To investigate the clinical sub-phenotype (SP) of pediatric acute kidney injury (AKI) and their association with clinical outcomes.
METHODS:
General status and initial values of laboratory markers within 24 hours after admission to the pediatric intensive care unit (PICU) were recorded for children with AKI in the derivation cohort (n=650) and the validation cohort (n=177). In the derivation cohort, a least absolute shrinkage and selection operator (LASSO) regression analysis was used to identify death-related indicators, and a two-step cluster analysis was employed to obtain the clinical SP of AKI. A logistic regression analysis was used to develop a parsimonious classifier model with simplified metrics, and the area under the curve (AUC) was used to assess the value of this model. This model was then applied to the validation cohort and the combined derivation and validation cohort. The association between SPs and clinical outcomes was analyzed with all children with AKI as subjects.
RESULTS:
In the derivation cohort, two clinical SPs of AKI (SP1 and SP2) were identified by the two-step cluster analysis using the 20 variables screened by LASSO regression, namely SPd1 group (n=536) and SPd2 group (n=114). The simplified classifier model containing eight variables (P<0.05) had an AUC of 0.965 in identifying the two clinical SPs of AKI (P<0.001). The validation cohort was clustered into SPv1 group (n=156) and SPv2 group (n=21), and the combined derivation and validation cohort was clustered into SP1 group (n=694) and SP2 group (n=133). After adjustment for confounding factors, compared with the SP1 group, the SP2 group had significantly higher incidence rates of multiple organ dysfunction syndrome and death during the PICU stay (P<0.001), and SP2 was significantly associated with the risk of death within 28 days after admission to the PICU (P<0.001).
CONCLUSIONS
This study establishes a parsimonious classifier model and identifies two clinical SPs of AKI with different clinical features and outcomes.The SP2 group has more severe disease and worse clinical prognosis.
Humans
;
Acute Kidney Injury/diagnosis*
;
Prognosis
;
Male
;
Female
;
Child
;
Child, Preschool
;
Phenotype
;
Infant
;
Logistic Models
;
Adolescent
7.Dual activation of GCGR/GLP1R signaling ameliorates intestinal fibrosis via metabolic regulation of histone H3K9 lactylation in epithelial cells.
Han LIU ; Yujie HONG ; Hui CHEN ; Xianggui WANG ; Jiale DONG ; Xiaoqian LI ; Zihan SHI ; Qian ZHAO ; Longyuan ZHOU ; JiaXin WANG ; Qiuling ZENG ; Qinglin TANG ; Qi LIU ; Florian RIEDER ; Baili CHEN ; Minhu CHEN ; Rui WANG ; Yao ZHANG ; Ren MAO ; Xianxing JIANG
Acta Pharmaceutica Sinica B 2025;15(1):278-295
Intestinal fibrosis is a significant clinical challenge in inflammatory bowel diseases, but no effective anti-fibrotic therapy is currently available. Glucagon receptor (GCGR) and glucagon-like peptide 1 receptor (GLP1R) are both peptide hormone receptors involved in energy metabolism of epithelial cells. However, their role in intestinal fibrosis and the underlying mechanisms remain largely unexplored. Herein GCGR and GLP1R were found to be reduced in the stenotic ileum of patients with Crohn's disease as well as in the fibrotic colon of mice with chronic colitis. The downregulation of GCGR and GLP1R led to the accumulation of the metabolic byproduct lactate, resulting in histone H3K9 lactylation and exacerbated intestinal fibrosis through epithelial-to-mesenchymal transition (EMT). Dual activating GCGR and GLP1R by peptide 1907B reduced the H3K9 lactylation in epithelial cells and ameliorated intestinal fibrosis in vivo. We uncovered the role of GCGR/GLP1R in regulating EMT involved in intestinal fibrosis via histone lactylation. Simultaneously activating GCGR/GLP1R with the novel dual agonist peptide 1907B holds promise as a treatment strategy for alleviating intestinal fibrosis.
8.Dimeric natural product panepocyclinol A inhibits STAT3 via di-covalent modification.
Li LI ; Yuezhou WANG ; Yiqiu WANG ; Xiaoyang LI ; Qihong DENG ; Fei GAO ; Wenhua LIAN ; Yunzhan LI ; Fu GUI ; Yanling WEI ; Su-Jie ZHU ; Cai-Hong YUN ; Lei ZHANG ; Zhiyu HU ; Qingyan XU ; Xiaobing WU ; Lanfen CHEN ; Dawang ZHOU ; Jianming ZHANG ; Fei XIA ; Xianming DENG
Acta Pharmaceutica Sinica B 2025;15(1):409-423
Homo- or heterodimeric compounds that affect dimeric protein function through interaction between monomeric moieties and protein subunits can serve as valuable sources of potent and selective drug candidates. Here, we screened an in-house dimeric natural product collection, and panepocyclinol A (PecA) emerged as a selective and potent STAT3 inhibitor with profound anti-tumor efficacy. Through cross-linking C712/C718 residues in separate STAT3 monomers with two distinct Michael receptors, PecA inhibits STAT3 DNA binding affinity and transcription activity. Molecular dynamics simulation reveals the key conformation changes of STAT3 dimers upon the di-covalent binding with PecA that abolishes its DNA interactions. Furthermore, PecA exhibits high efficacy against anaplastic large T cell lymphoma in vitro and in vivo, especially those with constitutively activated STAT3 or STAT3Y640F. In summary, our study describes a distinct and effective di-covalent modification for the dimeric compound PecA to disrupt STAT3 function.
9.VenusMutHub: A systematic evaluation of protein mutation effect predictors on small-scale experimental data.
Liang ZHANG ; Hua PANG ; Chenghao ZHANG ; Song LI ; Yang TAN ; Fan JIANG ; Mingchen LI ; Yuanxi YU ; Ziyi ZHOU ; Banghao WU ; Bingxin ZHOU ; Hao LIU ; Pan TAN ; Liang HONG
Acta Pharmaceutica Sinica B 2025;15(5):2454-2467
In protein engineering, while computational models are increasingly used to predict mutation effects, their evaluations primarily rely on high-throughput deep mutational scanning (DMS) experiments that use surrogate readouts, which may not adequately capture the complex biochemical properties of interest. Many proteins and their functions cannot be assessed through high-throughput methods due to technical limitations or the nature of the desired properties, and this is particularly true for the real industrial application scenario. Therefore, the desired testing datasets, will be small-size (∼10-100) experimental data for each protein, and involve as many proteins as possible and as many properties as possible, which is, however, lacking. Here, we present VenusMutHub, a comprehensive benchmark study using 905 small-scale experimental datasets curated from published literature and public databases, spanning 527 proteins across diverse functional properties including stability, activity, binding affinity, and selectivity. These datasets feature direct biochemical measurements rather than surrogate readouts, providing a more rigorous assessment of model performance in predicting mutations that affect specific molecular functions. We evaluate 23 computational models across various methodological paradigms, such as sequence-based, structure-informed and evolutionary approaches. This benchmark provides practical guidance for selecting appropriate prediction methods in protein engineering applications where accurate prediction of specific functional properties is crucial.
10.Dysregulation of Iron Homeostasis Mediated by FTH Increases Ferroptosis Sensitivity in TP53-Mutant Glioblastoma.
Xuejie HUAN ; Jiangang LI ; Zhaobin CHU ; Hongliang ZHANG ; Lei CHENG ; Peng LUN ; Xixun DU ; Xi CHEN ; Qian JIAO ; Hong JIANG
Neuroscience Bulletin 2025;41(4):569-582
Iron metabolism is a critical factor in tumorigenesis and development. Although TP53 mutations are prevalent in glioblastoma (GBM), the mechanisms by which TP53 regulates iron metabolism remain elusive. We reveal an imbalance iron homeostasis in GBM via TCGA database analysis. TP53 mutations disrupted iron homeostasis in GBM, characterized by elevated total iron levels and reduced ferritin (FTH). The gain-of-function effect triggered by TP53 mutations upregulates itchy E3 ubiquitin-protein ligase (ITCH) protein expression in astrocytes, leading to FTH degradation and an increase in free iron levels. TP53-mut astrocytes were more tolerant to the high iron environment induced by exogenous ferric ammonium citrate (FAC), but the increase in intracellular free iron made them more sensitive to Erastin-induced ferroptosis. Interestingly, we found that Erastin combined with FAC treatment significantly increased ferroptosis. These findings provide new insights for drug development and therapeutic modalities for GBM patients with TP53 mutations from iron metabolism perspectives.
Ferroptosis/drug effects*
;
Humans
;
Iron/metabolism*
;
Glioblastoma/metabolism*
;
Tumor Suppressor Protein p53/metabolism*
;
Homeostasis/physiology*
;
Ferritins/metabolism*
;
Brain Neoplasms/genetics*
;
Mutation
;
Astrocytes/drug effects*
;
Cell Line, Tumor
;
Piperazines/pharmacology*
;
Quaternary Ammonium Compounds/pharmacology*
;
Ferric Compounds

Result Analysis
Print
Save
E-mail