1.Hypoglycemic Effect and Mechanism of ICK Pattern Peptides
Lin-Fang CHEN ; Jia-Fan ZHANG ; Ye-Ning GUO ; Hui-Zhong HUANG ; Kang-Hong HU ; Chen-Guang YAO
Progress in Biochemistry and Biophysics 2025;52(1):50-60
Diabetes is a very complex endocrine disease whose common feature is the increase in blood glucose concentration. Persistent hyperglycemia can lead to blindness, kidney and heart disease, neurodegeneration, and many other serious complications that have a significant impact on human health and quality of life. The number of people with diabetes is increasing yearly. The global diabetes prevalence in 20-79 year olds in 2021 was estimated to be 10.5% (536.6 million), and it will rise to 12.2% (783.2 million) in 2045. The main modes of intervention for diabetes include medication, dietary management, and exercise conditioning. Medication is the mainstay of treatment. Marketed diabetes drugs such as metformin and insulin, as well as GLP-1 receptor agonists, are effective in controlling blood sugar levels to some extent, but the preventive and therapeutic effects are still unsatisfactory. Peptide drugs have many advantages such as low toxicity, high target specificity, and good biocompatibility, which opens up new avenues for the treatment of diabetes and other diseases. Currently, insulin and its analogs are by far the main life-saving drugs in clinical diabetes treatment, enabling effective control of blood glucose levels, but the risk of hypoglycemia is relatively high and treatment is limited by the route of delivery. New and oral anti-diabetic drugs have always been a market demand and research hotspot. Inhibitor cystine knot (ICK) peptides are a class of multifunctional cyclic peptides. In structure, they contain three conserved disulfide bonds (C3-C20, C7-C22, and C15-C32) form a compact “knot” structure, which can resist degradation of digestive protease. Recent studies have shown that ICK peptides derived from legume, such as PA1b, Aglycin, Vglycin, Iglycin, Dglycin, and aM1, exhibit excellent regulatory activities on glucose and lipid metabolism at the cellular and animal levels. Mechanistically, ICK peptides promote glucose utilization by muscle and liver through activation of IR/AKT signaling pathway, which also improves insulin resistance. They can repair the damaged pancrease through activation of PI3K/AKT/Erk signaling pathway, thus lowering blood glucose. The biostability and hypoglycemic efficacy of the ICK peptides meet the requirements for commercialization of oral drugs, and in theory, they can be developed into natural oral anti-diabetes peptide drugs. In this review, the structural properties, activity and mechanism of ICK pattern peptides in regulating glucose and lipid metabolism were summaried, which provided a reference for the development of new oral peptides for diabetes.
2.An adaptive Bayesian randomized controlled trial of traditional Chinese medicine in progressive pulmonary fibrosis: Rationale and study design.
Cheng ZHANG ; Yi-Sen NIE ; Chuan-Tao ZHANG ; Hong-Jing YANG ; Hao-Ran ZHANG ; Wei XIAO ; Guang-Fu CUI ; Jia LI ; Shuang-Jing LI ; Qing-Song HUANG ; Shi-Yan YAN
Journal of Integrative Medicine 2025;23(2):138-144
Progressive pulmonary fibrosis (PPF) is a progressive and lethal condition with few effective treatment options. Improvements in quality of life for patients with PPF remain limited even while receiving treatment with approved antifibrotic drugs. Traditional Chinese medicine (TCM) has the potential to improve cough, dyspnea and fatigue symptoms of patients with PPF. TCM treatments are typically diverse and individualized, requiring urgent development of efficient and precise design strategies to identify effective treatment options. We designed an innovative Bayesian adaptive two-stage trial, hoping to provide new ideas for the rapid evaluation of the effectiveness of TCM in PPF. An open-label, two-stage, adaptive Bayesian randomized controlled trial will be conducted in China. Based on Bayesian methods, the trial will employ response-adaptive randomization to allocate patients to study groups based on data collected over the course of the trial. The adaptive Bayesian trial design will employ a Bayesian hierarchical model with "stopping" and "continuation" criteria once a predetermined posterior probability of superiority or futility and a decision threshold are reached. The trial can be implemented more efficiently by sharing the master protocol and organizational management mechanisms of the sub-trial we have implemented. The primary patient-reported outcome is a change in the Leicester Cough Questionnaire score, reflecting an improvement in cough-specific quality of life. The adaptive Bayesian trial design may be a promising method to facilitate the rapid clinical evaluation of TCM effectiveness for PPF, and will provide an example for how to evaluate TCM effectiveness in rare and refractory diseases. However, due to the complexity of the trial implementation, sufficient simulation analysis by professional statistical analysts is required to construct a Bayesian response-adaptive randomization procedure for timely response. Moreover, detailed standard operating procedures need to be developed to ensure the feasibility of the trial implementation. Please cite this article as: Zhang C, Nie YS, Zhang CT, Yang HJ, Zhang HR, Xiao W, Cui GF, Li J, Li SJ, Huang QS, Yan SY. An adaptive Bayesian randomized controlled trial of traditional Chinese medicine in progressive pulmonary fibrosis: Rationale and study design. J Integr Med. 2025; 23(2): 138-145.
Female
;
Humans
;
Male
;
Bayes Theorem
;
Disease Progression
;
Drugs, Chinese Herbal/therapeutic use*
;
Medicine, Chinese Traditional/methods*
;
Pulmonary Fibrosis/therapy*
;
Quality of Life
;
Randomized Controlled Trials as Topic
;
Research Design
;
Adaptive Clinical Trials as Topic
3.Study on the biological exposure limit of whole blood chromium in occupational hexavalent chromium compounds exposed population
Guiping HU ; Yali ZHANG ; Shiyi HONG ; Zekang SU ; Qiaojian ZHANG ; Li WANG ; Tiancheng WANG ; Shanfa YU ; Guang JIA
China Occupational Medicine 2024;51(2):129-137
ObjectiveTo analyze the exposure-response relationship of peripheral whole blood chromium level and lung function as well as genetic toxicity indicators in workers exposed to hexavalent chromium [Cr(Ⅵ)] compounds, and to propose a biological exposure limit of whole blood chromium for soluble Cr(Ⅵ) compounds-exposed workers. Methods A total of 515 workers from a dynamic occupational Cr(Ⅵ) compounds-exposed cohort in an enterprise from 2010 to 2017 were selected as the research subjects using a retrospective cohort study. A total of 918 followed-up results of research subjects and baseline data of a cohort were analyzed based on bibliometric analysis. The results include lung function tests, whole blood chromium level detected by inductively coupled plasma-mass spectrometry, urinary 8-hydroxy-2′-deoxyguanosine (8-OHdG) detected by high performance liquid chromatography-tandem mass spectrometry, peripheral micronuclei frequency (MNF) detected by cytokinesis-block micronucleus assay, and mitochondrial DNA copy number (mtCN) detected by real-time fluorescence quantitative polymerase chain reaction. Results The results of bibliometric analysis showed that domestic and foreign studies on biological monitoring of Cr(Ⅵ) compounds increased year by year in the past 30 years, and whole blood chromium levels had a good correlation with the occupational Cr(Ⅵ) compounds exposure. The geometric mean of whole blood chromium levels in males and females among the occupational Cr(Ⅵ) compounds exposure cohort was 2.77 and 1.79 μg/L, respectively. A turning point appeared in 6.00 μg/L chromium in whole blood of the exposure-response curve of whole blood chromium levels with lung function indicators and genetic toxicity indicators. For each unit increase in the natural logarithm-transformed whole blood chromium level, the forced expiratory volume in one second (FEV1) decreased by 0.05 L, the FEV1/forced-vital-capacity decreased by 0.67%, the peak expiratory flow decreased by 0.15 L/s, the maximal mid-expiratory flow decreased by 0.09 L/s, the MNF increased by 0.149‰, the urinary 8-OHdG increased by 0.090 μg/g, and the mtCN increased by 0.013. When the whole blood chromium level was >6.00 μg/L, there was a significant increase in urinary 8-OHdG, MNF, and mtCN (all P<0.01). Conclusion The level of whole blood chromium can be used as a biomarker for occupational exposure to soluble Cr(Ⅵ) compounds. The preliminary biological exposure limit is set at 6.00 μg/L for whole blood chromium in workers exposed to soluble Cr(Ⅵ) compounds.
4.Nanomaterial-based Therapeutics for Biofilm-generated Bacterial Infections
Zhuo-Jun HE ; Yu-Ying CHEN ; Yang ZHOU ; Gui-Qin DAI ; De-Liang LIU ; Meng-De LIU ; Jian-Hui GAO ; Ze CHEN ; Jia-Yu DENG ; Guang-Yan LIANG ; Li WEI ; Peng-Fei ZHAO ; Hong-Zhou LU ; Ming-Bin ZHENG
Progress in Biochemistry and Biophysics 2024;51(7):1604-1617
Bacterial biofilms gave rise to persistent infections and multi-organ failure, thereby posing a serious threat to human health. Biofilms were formed by cross-linking of hydrophobic extracellular polymeric substances (EPS), such as proteins, polysaccharides, and eDNA, which were synthesized by bacteria themselves after adhesion and colonization on biological surfaces. They had the characteristics of dense structure, high adhesiveness and low drug permeability, and had been found in many human organs or tissues, such as the brain, heart, liver, spleen, lungs, kidneys, gastrointestinal tract, and skeleton. By releasing pro-inflammatory bacterial metabolites including endotoxins, exotoxins and interleukin, biofilms stimulated the body’s immune system to secrete inflammatory factors. These factors triggered local inflammation and chronic infections. Those were the key reason for the failure of traditional clinical drug therapy for infectious diseases.In order to cope with the increasingly severe drug-resistant infections, it was urgent to develop new therapeutic strategies for bacterial-biofilm eradication and anti-bacterial infections. Based on the nanoscale structure and biocompatible activity, nanobiomaterials had the advantages of specific targeting, intelligent delivery, high drug loading and low toxicity, which could realize efficient intervention and precise treatment of drug-resistant bacterial biofilms. This paper highlighted multiple strategies of biofilms eradication based on nanobiomaterials. For example, nanobiomaterials combined with EPS degrading enzymes could be used for targeted hydrolysis of bacterial biofilms, and effectively increased the drug enrichment within biofilms. By loading quorum sensing inhibitors, nanotechnology was also an effective strategy for eradicating bacterial biofilms and recovering the infectious symptoms. Nanobiomaterials could intervene the bacterial metabolism and break the bacterial survival homeostasis by blocking the uptake of nutrients. Moreover, energy-driven micro-nano robotics had shown excellent performance in active delivery and biofilm eradication. Micro-nano robots could penetrate physiological barriers by exogenous or endogenous driving modes such as by biological or chemical methods, ultrasound, and magnetic field, and deliver drugs to the infection sites accurately. Achieving this using conventional drugs was difficult. Overall, the paper described the biological properties and drug-resistant molecular mechanisms of bacterial biofilms, and highlighted therapeutic strategies from different perspectives by nanobiomaterials, such as dispersing bacterial mature biofilms, blocking quorum sensing, inhibiting bacterial metabolism, and energy driving penetration. In addition, we presented the key challenges still faced by nanobiomaterials in combating bacterial biofilm infections. Firstly, the dense structure of EPS caused biofilms spatial heterogeneity and metabolic heterogeneity, which created exacting requirements for the design, construction and preparation process of nanobiomaterials. Secondly, biofilm disruption carried the risk of spread and infection the pathogenic bacteria, which might lead to other infections. Finally, we emphasized the role of nanobiomaterials in the development trends and translational prospects in biofilm treatment.
5.The Plant ATG8-binding Proteins
Feng-Juan ZHANG ; Hong-Juan JING ; Guang-Zhou ZHOU ; Shuai-Jia QIN ; Chu-Yan HAN
Progress in Biochemistry and Biophysics 2024;51(6):1371-1381
ATG8-binding proteins play a key role in autophagy, selective autophagy or non-autophagy process by interacting between ATG8 and the ATG8-interacting motif (AIM) or the ubiquitin-interacting motif (UIM). There is great progress of ATG8-binding proteins in yeast and mammalian studies. However, the plant domain is still lagging behind. Therefore, the structure characteristics of plant ATG8 binding protein were firstly outlined. Unlike the single copy of ATG8 gene in yeast, many homologous genes have been identified in plant. The LIR/ AIM-docking site (LDS) of ATG8 protein contains W and L pockets and is responsible for binding to AIM. The ATG8 protein binds to UIM-containing proteins via UIM-docking site (UDS) instead of LDS. UDS is in the opposite position to LDS, so the ATG8 can bind both AIM and UIM proteins. Secondly, the structure and function of ATG8-binding proteins, especially the selective autophagy receptors, were systematically described. The protein NBR1 and Joka2, as proteaphagy receptors, guide ubiquitination protein aggregates to autophagosome for degradation by binding to AIM and ATG8 in Arabidopsis and tobacco, respectively. AtNBR1 also promotes plant immunity by binding the capsid protein of cauliflower mosaic virus and silencing suppressor HCpro of turnip mosaic virus, mediating pathogen autophagy. AtNBR1 still degrades chloroplast by microautophagy under photoinjure or chlorophagy during ibiotic stress. And the protein ORM mediates the degradation of plant immune receptor flagellin sensing 2 (FLS2) through AIM binding to ATG8. Interestingly, ATI1 and ATI2 participate in both chlorophagy and ERphagy. Otherwise, ER membrane protein AtSec62, soluble protein AtC53, and ubiquitin-fold modifier1-specific ligase 1 (UFL1) can be directly bound to ATG8 as ER autophagy receptors. As pexophagy receptor, AtPEX6 and AtPEX10 bind to ATG8 via AIM and participate in pexophagy. RPN10, as a 26S proteasome subunit, whose C-terminal UIM1 and UIM2 bind ubiquitin and ATG8, respectively, mediates the selective autophagy degradation of 26S proteasome inactivation when fully ubiquitinated. Plant-specific mitochondrial localization proteins FCS-like zinc finger (FLZ) and friendly (FMT) may also be mitophagy receptors. CLC2 binds to ATG8 via the AIM-LDS docking site and is recruited to autophagy degradation on the Golgi membrane. The tryptophan-rich sensory protein (TSPO) in Arabidopsis was involved in clearing free heme, porphyrin and plasma membrane intrinsic protein 2;7 (PIP2;7) through the combination of AIM and ATG8. The conformation of GSNOR1 changes during anoxia, exposing the interaction between AIM and ATG8, leading to selective degradation of GSNOR1. At last, the ATG8 binding proteins involved in autophagosome closure, transport and synthetic synthesis was summarized. For example, plant-specific FYVE domain protein required for endosomal sorting 1 (FREE1) is involved in the closure of autophagosomes during nutrient deficiency. Therefore, according to the recent research advances, the structure and function of plant ATG8-binding proteins were systematically summarized in this paper, in order to provide new ideas for the study of plant selective autophagy and autophagy.
6.A Comprehensive Study of the Association between LEPR Gene rs1137101 Variant and Risk of Digestive System Cancers
Qiong Wei HU ; Guang Wei ZHOU ; Wei Guang ZHOU ; Xi Jia LIAO ; Xing Jia SHI ; FengYang XIE ; Heng Shou LI ; Yong WANG ; Hong Xian FENG ; Li Xiu GU ; Feng Bi CHEN
Biomedical and Environmental Sciences 2024;37(5):445-456
Objective The leptin receptor,encoded by the LEPR gene,is involved in tumorigenesis.A potential functional variant of LEPR,rs1137101(Gln223Arg),has been extensively investigated for its contribution to the risk of digestive system(DS)cancers,but results remain conflicting rather than conclusive.Here,we performed a case-control study and subsequent meta-analysis to examine the association between rs1137101 and DS cancer risk. Methods A total of 1,727 patients with cancer(gastric/liver/colorectal:460/480/787)and 800 healthy controls were recruited.Genotyping of rs1137101 was conducted using a polymerase chain reaction-restriction fragment length polymorphism(PCR-RFLP)assay and confirmed using Sanger sequencing.Twenty-four eligible studies were included in the meta-analysis. Results After Bonferroni correction,the case-control study revealed that rs1137101 was significantly associated with the risk of liver cancer in the Hubei Chinese population.The meta-analysis suggested that rs1137101 is significantly associated with the risk of overall DS,gastric,and liver cancer in the Chinese population. Conclusion The LEPR rs1137101 variant may be a genetic biomarker for susceptibility to DS cancers(especially liver and gastric cancer)in the Chinese population.
7.Rapid On-Site Screening of Six Kinds of Pesticide Residues in Cosmetics Containing Plant Extracts by Fan-shaped Paper Spray Ionization and Miniature Mass Spectrometry
Yue-Guang LYU ; Jia-Yu ZHAO ; Hong-Yu XUE ; Qiang MA
Chinese Journal of Analytical Chemistry 2024;52(6):838-845
Cosmetics containing plant extracts may pose health risks to consumers due to inadequate control over the quality of plant raw materials,which may lead to residues of pesticides such as carbendazim in cosmetics. Developing rapid detection methods is of paramount importance for regulating product quality and safeguarding human health. A rapid on-site analytical method was developed for the screening of six kinds of pesticide residues in plant extract-based cosmetics using fan-shaped paper spray ionization with chromatographic enrichment functionality coupled with a miniature mass spectrometer. Cosmetic samples were directly loaded onto the fan-shaped paper substrate drop by drop,followed by chromatographic enrichment,paper spray ionization,and the miniature mass spectrometry analysis. The entire analysis time for a single run was less than 1 min. By loading samples in a dropwise manner,significantly improved chromatographic enrichment on the tip and 6 to 32-fold signal enhancement were achieved on the fan-shaped paper substrate compared to traditional triangle-shaped paper substrate. The limits of detection (LODs) and quantitation (LOQs) for the six kinds of pesticides were 0.02-0.05 mg/kg and 0.05-0.10 mg/kg,respectively. The recoveries were 82.6%-101.8% with relative standard deviations of 8.3%-16.5%. The established method was convenient,sensitive,and suitable for rapid,on-site screening of pesticide residues in plant extract-based cosmetics.
8.Accurate quantitative evaluation of MRI scanning noise based on laser vibrometry technology
Ke-Sheng WANG ; Pei-Jia XU ; Pei LIU ; Jing-Sheng SUN ; Ze-Kai LI ; Xu-Guang PENG ; Shuang-Shuang LI ; Qian-Hong HE ; Zhen LIU
Chinese Medical Equipment Journal 2024;45(10):20-24
Objective To carry out accurate quantative evaluation of MRI scanning noise based on laser vibrometry technology.Methods Skull and spine MRI was performed with mute and conventional sequences.A laser vibrometry device was used to sample the surface vibration noise at the outer edge of the inspection hole of MRI system according to GB/T 16539-1996 Acoustics—Determination of sound power levels of noise sources using vibration velocity—Measurement for seal machinery,and the indicators of sound power level,sound pressure level and perceived noise level obtained by the three calculation methods(LPN1,LPN2 and LPN3)were analyzed with some dedicated MRI noise analysis software.Results The peak sound pressure levels for conventional and mute sequences of skull scanning were 81 and 63 dB(A),respectively,and mute sequence reduced the noise level significantly;the peak sound pressure levels for conventional and mute sequences of spine scanning were 79 and 75 dB(A),respectively,and the noise reduction level was significantly lower than that of skull scanning.Significant differences in noise reduction were not found in spine scanning sequences,while were found in skull scanning sequences.During spine and skull scanning LPN1,LPN2 and LPN3 obtained by the three calculation methods of conventional and mute sequences were all higher than the overall sound power and overall pressure levels obviously.Conclusion Mute sequence can not realize linear noise reduction for the whole frequency band,the perceived noise of the human ear during MRI scanning is related directly to the scanning sequence,and there may be some bias when only one physical indicator is involved in the noise evaluation of MRI system.[Chinese Medical Equipment Journal,2024,45(10):20-24]
9.A comparative study of the efficacies of two different surgical methods for the treatment of distal tibial fractures
Jin YIN ; Ming CHEN ; Jia-Fei WANG ; Hong-Bing ZHENG ; Guang-Hui YANG
Journal of Regional Anatomy and Operative Surgery 2024;33(9):759-763
Objective To compare the efficacies of retrograde tibial nailing(RTN)versus minimally invasive percutaneous plate osteosynthesis(MIPPO)in the treatment of distal tibial fractures.Methods A retrospective analysis was conducted on the clinical data of 55 patients with distal tibial fractures who underwent surgery in our hospital.Patients were divided into two groups based on the different surgical methods,patients in the RTN group(n=25)were treated with RTN,and patients in the MIPPO group(n=30)were treated with MIPPO.The surgical parameters(operation time,intraoperative blood loss,intraoperative fluoroscopy times,and success rate of closed reduction),fracture healing time,ankle dorsiflexion range of motion and American Orthopaedic Foot and Ankle Society(AOFAS)ankle-hindfoot scores 6 months after operation and at the last follow-up,and the incidence of complications during perioperative period and follow-up were compared between the two groups.Results The operation time,intraoperative blood loss,and intraoperative fluoroscopy times in the RTN group were significantly shorter/less than those in the MIPPO group(P<0.05).The ankle dorsiflexion range of motion and AOFAS ankle-hindfoot score 6 months after operation in the RTN group were significantly greater/higher than those in the MIPPO group(P<0.05).There was no statistically significant difference in the fracture healing time,or ankle dorsiflexion range of motion and AOFAS ankle-hindfoot score at the last follow-up between the two groups(P>0.05).The success rate of closed reduction in the RTN group was 72.00%,which was lower than that of 96.67%in the MIPPO group(P<0.05).The incidence of soft tissue-related complications in the RTN group was signifi-cantly lower than that in the MIPPO group(P<0.05),while there was no statistically significant difference in the overall incidence of complica-tions between the two groups(P>0.05).Conclusion RTN is an effective minimally invasive surgical technique for the treatment of distal tibial fractures,characterized by minimal trauma,low incidence of soft tissue complications,and fast recovery of joint function compared with MIPPO.
10.Flavonoids from the leaves of Cinnamomum camphora and their antioxidant activities
Peng-Fei YANG ; Jin-Hong WEI ; Yü-Mei QIAN ; Zheng-Guang SUN ; Wei WU ; Shen HUANG ; Jia-Xiang FEI ; Duo-Bin MAO
Chinese Traditional Patent Medicine 2024;46(6):1889-1894
AIM To study the flavonoids from the leaves of Cinnamomum camphora(L.)Presl.and their antioxidant activities.METHODS The 95%ethanol extraction from the leaves of C.camphora was isolated and purified by liquid-liquid extraction,macroporous adsorption resin chromatography,HW-40C gel column chromatography,molecular exclusion chromatography and preparative HPLC,then the structures of obtained compounds were identified by physicochemical properties and spectral data.The antioxidant activity was determined by DPPH method.RESULT Ten flavonoids were isolated and identified as(2R,3S)-7-methoxy-5-O-β-D-glucopyranosyl-afzelechin(1),quercetin-3-O-sambubioside(2),quercetin-3-O-β-D-apiosyl-(1→2)-β-D-glucoside(3),quercetin-3-O-robibioside(4),kaempferol-3-O-β-D-rutinoside-7-O-β-D-glucoside(5),kaempferol-3-O-α-L-rhamnoside-7-O-β-D-glucoside(6),5,3'-di-O-methyl-epicatechin(7)、cinchonain Ⅱb(8)、quercetin-3,4'-di-O-β-D-glucoside(9)、(-)-epicatechin(10).The IC50 value of compound 8 scavenging DPPH free radical was 4.8 μg/mL.CONCLUSION Compound 1 is a new compound,and compound 2-6 are obtained from Cinnamomum genus for the first time,compound 7-9 are first isolated from this plant.Compound 8 shows good antioxidant activities..

Result Analysis
Print
Save
E-mail