1.Sex differences in the efficacy of immune checkpoint inhibitors in treating patients with non-small cell lung cancer: A systematic review and meta-analysis
Xindong LUO ; Ziqiang HONG ; Baiqiang CUI ; Tao CHENG ; Yunjiu GOU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):237-243
Objective To systematically review the sex differences in efficacy of immune checkpoint inhibitors (ICIs) for non-small cell lung cancer (NSCLC) patients. Methods We conducted a computer search of Medline, The Cochrane Library, and EMbase from inception to November 2022 to identify randomized controlled trials (RCTs) assessing the efficacy of ICIs in patients with NSCLC. A meta-analysis was performed using RevMan 5.4 software. Results Finally 16 RCTs with a total of 9 653 patients were included, and the modified Jadad scale score was≥4 points. Meta-analysis results showed that in female NSCLC patients receiving immune therapy, the median overall survival (OS) [HR=0.72, 95%CI (0.61, 0.85), P<0.001] was longer than that in males [HR=0.73, 95%CI (0.69, 0.78), P<0.001]. Males [HR=0.64, 95%CI (0.58, 0.71), P<0.001] had an advantage over females [HR=0.76, 95%CI (0.57, 1.03), P=0.760] in median progression-free survival (PFS). Conclusion Females receiving ICIs have an advantage over males in terms of median OS. However, males tend to derive greater benefit from ICIs in terms of median PFS.
2.Three new gallic acid sugaresters from Elaeagnus oxycarpa Schlechtend leaves and their antioxidant and tyrosinase inhibitory activities
Feng-zhen CUI ; Jian-hong FU ; Guo-yan XU ; AYEKABAYR·EKBAYR ; Chang-da MA
Acta Pharmaceutica Sinica 2025;60(2):434-441
Five compounds were isolated and purified from the water extract of
3.Study on HPLC fingerprint and quantitative analysis of multi-components by single-marker content determination method for Shechuan naolitong granules
Xiaoyan ZHANG ; Kairu DING ; Hong ZHANG ; Wenbing ZHI ; Shengnan JIANG ; Zongren XU ; Ni CUI ; Xiangfeng WEI ; Yang LIU
China Pharmacy 2025;36(19):2409-2414
OBJECTIVE To provide a reference for optimizing and promoting the quality standards of Shechuan naolitong granules. METHODS Fifteen batches of Shechuan naolitong granules were used as samples to establish HPLC fingerprints using the Similarity Evaluation System for Chromatographic Fingerprint of Traditional Chinese Medicine (2012 edition). Similarity evaluation and common peak identification were performed, and orthogonal partial least squares discriminant analysis (OPLS-DA) was used to assess quality differences among different batches and to screen quality differential components. Using salvianolic acid B(SAB) as the internal reference, quantitative analysis of multi-components by single-marker (QAMS) was developed to simultaneously determine geniposidic acid (GA), chlorogenic acid (CA), vaccarin (VA), ferulic acid (FA) and senkyunolide I (SI). The results were compared with those obtained by the external standard method. RESULTS A total of 13 common peaks were identified in the HPLC fingerprints of 15 batches of samples, and the similarities of the spectra were all above 0.96. Seven chromatographic peaks were identified as GA (peak 3), CA (peak 6), VA (peak 8), FA (peak 9), SI (peak 11), SAB(peak 12) and TA(peak 13). OPLS-DA indicated that the differential quality markers among 15 batches were peaks 5, 11 (SI), and 12 (SAB).Using SAB as the internal reference, the relative correction factors for GA, CA, VA, FA and SI were calculated as 1.058 4, 0.594 3, 0.643 3, 0.342 7 and 0.262 8, respectively. The mean content of GA, CA, VA, FA, SI and SAB across the 15 batches of samples were 0.155 0, 0.085 4, 0.140 3, 0.071 8, 0.072 7, 1.276 3 mg/g, respectively, showing no significant difference compared with the ESM (P>0.05). CONCLUSIONS The established HPLC fingerprint and QAMS are simple, efficient and economical, providing a reference for the quality control and further development of Shechuan naolitong granules.
4.Advances in mechanisms of damage to cardiovascular system by exposure to micro-nano plastics
Guangzhen LU ; Xiaoting WANG ; Xinye WANG ; Hong ZHUANG ; Mengmeng CUI ; Gang ZHAO
Journal of Environmental and Occupational Medicine 2025;42(10):1260-1267
This review described the potential health threats to the cardiovascular system from micro-nano plastics (MNPs) and their multifaceted toxicity mechanisms. The article reviewed the environmental distribution of MNPs, exposure pathways, and their toxic effects on the cardiovascular system, and summarized the specific mechanisms of MNPs involving oxidative stress, inflammatory response, mitochondrial damage, apoptosis, pyroptosis, and autophagy dysregulation. Meanwhile, the combined toxic effects of MNPs with other environmental pollutants (e.g., heavy metals and polycyclic aromatic hydrocarbons), including synergistic, antagonistic, and dual effects, were analyzed, and the potential risks of MNPs as carriers of microorganisms and toxic chemicals were pointed out. The widespread presence of MNPs and their complex toxicity mechanisms may make them important triggers for cardiovascular diseases, but current research still suffers from unbalanced studies across environmental systems, incomplete understanding of plastic properties, and limited knowledge of long-term biological effects. Future research should focus on the long-term effects of MNPs, the joint toxicity mechanisms with other pollutants, and the differential effects across population subgroups. It is suggested to accelerate plastic recycling technology innovation, promote biodegradable materials, and optimize waste treatment process to mitigate the potential threat of MNPs pollution to human health. Through multidisciplinary collaboration and in-depth research, combining innovative concepts from toxicology, public health policy, and environmental science, it is expected to provide new methods and approaches for the prevention and treatment of cardiovascular diseases associated with MNPs.
5.Acupuncture at yinsanzhen combined with auricular point sticking in the treatment of primary dysmenorrhea: a randomized controlled trial.
Chunxia LU ; Lin FENG ; Hong LUO ; Jin CUI ; Bo CHEN
Chinese Acupuncture & Moxibustion 2025;45(6):761-765
OBJECTIVE:
To observe the clinical effect of acupuncture at yinsanzhen combined with auricular point sticking on primary dysmenorrhea (PDM).
METHODS:
Sixty patients with PDM were randomly divided into an observation group and a control group, with 30 cases in each group. Patients in the observation group were treated with acupuncture at yinsanzhen combined with auricular point sticking. The acupuncture was given at yinsanzhen (Guanyuan [CV4] and bilateral Guilai [ST29], Sanyinjiao [SP6]) once daily for 5 consecutive days. Auricular point sticking was applied to gan (CO12), shen (CO10), neifenmi (CO18), etc. every other day, alternated between ears, totaling 3 sessions. All treatments were started 5 days before menstruation. Patients in the control group were treated with ibuprofen sustained-release capsules on the first day of menstruation for 3 consecutive days. Both groups were treated for 3 menstrual cycles. The scores of Cox menstrual symptom scale (CMSS) and visual analogue scale (VAS) were compared between the two groups before and after treatment and at the second menstrual cycle after treatment completion (follow-up). The serum contents of prostaglandin (PG) F2α and PGE2 were detected before and after treatment, and the clinical effect and safety of the two groups were evaluated.
RESULTS:
After treatment and during follow-up, the CMSS severity and duration scores and VAS scores of the two groups were lower than those before treatment (P<0.05 ), and the scores in the observation group were lower than those in the control group (P<0.05). After treatment, the serum contents of PGF2α were decreased, and the contents of PGE2 were increased (P<0.05) in the two groups. The total effective rate of the observation group was 93.3% (28/30), which was higher than 80.0% (24/30) of the control group (P<0.05). There were no adverse reactions in both groups.
CONCLUSION
Yinsanzhen combined with auricular point sticking can effectively improve the pain symptoms, relieve the degree of pain and shorten the duration of pain in patients with PDM, which may play a therapeutic role by reducing the content of serum PGF2α and increasing the content of serum PGE2.
Humans
;
Female
;
Dysmenorrhea/therapy*
;
Acupuncture Points
;
Adult
;
Young Adult
;
Acupuncture, Ear
;
Treatment Outcome
;
Adolescent
;
Acupuncture Therapy
;
Combined Modality Therapy
6.Research progress on NCOA4-mediated ferritinophagy and related diseases.
Chen JIA ; Hong-Ji LIN ; Fang CUI ; Rui LU ; Yi-Ting ZHANG ; Zhi-Qin PENG ; Min SHI
Acta Physiologica Sinica 2025;77(1):194-208
Nuclear receptor co-activator 4 (NCOA4) acts as a selective cargo receptor that binds to ferritin, a cytoplasmic iron storage complex. By mediating ferritinophagy, NCOA4 regulates iron metabolism and releases free iron in the body, thus playing a crucial role in a variety of biological processes, including growth, development, and metabolism. Recent studies have shown that NCOA4-mediated ferritinophagy is closely associated with the occurrence and development of iron metabolism-related diseases, such as liver fibrosis, renal cell carcinoma, and neurodegenerative diseases. In addition, a number of clinical drugs have been identified to modulate NCOA4-mediated ferritinophagy, significantly affecting disease progression and treatment efficacy. This paper aims to review the current research progress on the role of NCOA4-mediated ferritinophagy in related diseases, in order to provide new ideas for targeted clinical therapy.
Humans
;
Nuclear Receptor Coactivators/physiology*
;
Ferritins/metabolism*
;
Animals
;
Neurodegenerative Diseases/metabolism*
;
Iron/metabolism*
;
Autophagy/physiology*
;
Liver Cirrhosis/metabolism*
;
Carcinoma, Renal Cell/metabolism*
;
Kidney Neoplasms/physiopathology*
7.Cold stimulation regulates lipid metabolism and the secretion of exosomes from subcutaneous adipose tissue in mice.
Shuo KE ; Li XU ; Rui-Xue SHI ; Jia-Qi WANG ; Le CUI ; Yuan JI ; Jing LI ; Xiao-Hong JIANG
Acta Physiologica Sinica 2025;77(2):231-240
Cold has been a long-term survival challenge in the evolutionary process of mammals. In response to cold stress, in addition to brown adipose tissue (BAT) dissipating energy as heat through glucose and lipid oxidation to maintain body temperature, cold stimulation can strongly activate thermogenesis and energy expenditure in beige fat cells, which are widely distributed in the subcutaneous layer. However, the effects of cold stimulation on other tissues and systemic lipid metabolism remain unclear. Our previous research indicated that, under cold stress, BAT not only produces heat but also secretes numerous exosomes to mediate BAT-liver crosstalk. Whether subcutaneous fat has a similar mechanism is still unknown. Therefore, this study aimed to investigate the alterations in lipid metabolism across various tissues under cold exposure and to explore whether subcutaneous fat regulates systemic glucose and lipid metabolism via exosomes, thereby elucidating the regulatory mechanisms of lipid metabolism homeostasis under physiological stress. RT-qPCR, Western blot, and H&E staining methods were used to investigate the physiological changes in lipid metabolism in the serum, liver, epididymal white adipose tissue, and subcutaneous fat of mice under cold stimulation. The results revealed that cold exposure significantly enhanced the thermogenic activity of subcutaneous adipose tissue and markedly increased exosome secretion. These exosomes were efficiently taken up by hepatocytes, where they profoundly influenced hepatic lipid metabolism, as evidenced by alterations in the expression levels of key genes involved in lipid synthesis and catabolism pathways. This study has unveiled a novel mechanism by which subcutaneous fat regulates lipid metabolism through exosome secretion under cold stimulation, providing new insights into the systemic regulatory role of beige adipocytes under cold stress and offering a theoretical basis for the development of new therapeutic strategies for obesity and metabolic diseases.
Animals
;
Lipid Metabolism/physiology*
;
Mice
;
Exosomes/metabolism*
;
Cold Temperature
;
Subcutaneous Fat/physiology*
;
Thermogenesis/physiology*
;
Adipose Tissue, Brown/metabolism*
;
Male
8.Research progress on transcription factors and regulatory proteins of Salvia miltiorrhiza.
Wen XU ; Mei TIAN ; Ye SHEN ; Juan GUO ; Bao-Long JIN ; Guang-Hong CUI
China Journal of Chinese Materia Medica 2025;50(1):58-70
Salvia miltiorrhiza is a perennial herb of the genus Salvia(Lamiaceae). As one of the earliest medicinal plants to undergo molecular biology research, it has gradually become a model plant for molecular biology of medicinal plants. With the gradual analysis of the genome of S. miltiorrhiza and the biosynthetic pathways of its main active components tanshinone and salvianolic acids, the transcriptional regulation mediated by transcription factors and related regulatory proteins has gradually become a new research focus. Due to the lack of scientific and unified naming of transcription factors and different research indexes in different literature, this paper systematically sorted out the transcription factors in different literature with the genomes of DSS3 from selfing for three generations and bh2-7 from selfing for six generations as reference. In total, 73 transcription factors and related regulatory proteins belonging to 13 gene families were identified. The effects of overexpression or gene silencing experiments on tanshinone and salvianolic acids were also analyzed. This study unified the identified transcription factors, which laid a foundation for further constructing the regulatory networks of secondary metabolites and insect or stress resistance and improving the quality of medicinal materials by using global transcriptional regulation engineering.
Salvia miltiorrhiza/chemistry*
;
Plant Proteins/metabolism*
;
Gene Expression Regulation, Plant
;
Transcription Factors/metabolism*
;
Abietanes/metabolism*
9.International risk signal prioritization principles: comparison and implications for scientific regulation of traditional Chinese medicine.
Rui ZHENG ; Shuo LIU ; Shi-Jia WANG ; He-Rong CUI ; Hai-Bo SONG ; Hong-Cai SHANG
China Journal of Chinese Materia Medica 2025;50(1):273-277
Signal detection is a critical task in drug safety regulation. However, it inevitably generates irrelevant or false signals, posing challenges for resource allocation by marketing authorization holders. To reasonably assess these signals, different countries have established various principles for prioritizing the evaluation of risk signals. This study systematically compares these principles and finds that the U.S. Food and Drug Administration(FDA) focuses on practical issues, such as identifying drug confusion or drug interactions. However, China's Good Pharmacovigilance Practices and the European Medicines Agency(EMA) emphasize a comprehensive evaluation framework. The Council for International Organizations of Medical Sciences(CIOMS) emphasizes the consistency of multiple data sources, highlighting the reliability of signal evaluation. China practices a multidisciplinary approach combining traditional Chinese and western medicine, and the risk signals related to traditional Chinese medicine(TCM) have unique characteristics, including complex components, cumulative toxicity, specific theoretical foundations, and drug interactions. The different priorities in risk signal evaluation principles across countries suggest that China should strengthen clinical trial research, emphasize corroboration with evidence of multiple sources, and pay particular attention to the risks of drug interactions in the TCM regulatory science. Establishing the risk signal prioritization principles that align with the characteristics of TCM enables more precise and efficient scientific regulation of TCM.
Humans
;
Medicine, Chinese Traditional/standards*
;
China
;
Drugs, Chinese Herbal/adverse effects*
;
United States
;
United States Food and Drug Administration
10.Angelicae Dahuricae Radix polysaccharides treat ulcerative colitis in mice by regulating gut microbiota and metabolism.
Feng XU ; Lei ZHU ; Ya-Nan LI ; Cheng CHENG ; Yuan CUI ; Yi-Heng TONG ; Jing-Yi HU ; Hong SHEN
China Journal of Chinese Materia Medica 2025;50(4):896-907
This study employed 16S r RNA gene high-throughput sequencing and metabolomics to explore the mechanism of Angelicae Dahuricae Radix polysaccharides(RP) in the treatment of ulcerative colitis(UC). A mouse model of UC was induced with 2. 5% dextran sulfate sodium. The therapeutic effects of RP on UC in mice were evaluated based on changes in body weight, disease activity index( DAI), and colon length, as well as pathological changes. RT-qPCR was performed to assess the m RNA levels of interleukin(IL)-6, IL-1β, tumor necrosis factor(TNF)-α, myeloperoxidase(MPO), mucin 2(Muc2), Occludin, Claudin2, and ZO-1 in the mouse colon tissue. ELISA was employed to measure the expression of IL-1β and TNF-α in the colon tissue. The intestinal permeability of mice was evaluated by the fluorescent dye permeability assay. Immunohistochemistry was employed to detect the expression of Muc2 and occludin in the colon tissue. Changes in gut microbiota and metabolites were analyzed by 16S r RNA sequencing and ultra-high-performance liquid chromatography coupled with quadrupole-orbitrap mass spectrometry( UPLC-Q-Exactive Plus Orbitrap MS), respectively. The results indicated that low-dose RP alleviated general symptoms, reduced colonic inflammation and intestinal permeability, and promoted Muc2 secretion and tight junction protein expression in UC mice. In addition, low-dose RP increased gut microbiota diversity in UC mice and decreased the relative abundance of harmful bacteria such as Ochrobactrum and Streptococcus. Twenty-seven differential metabolites were identified in feces, and low-dose RP restored the levels of disturbed metabolites. Notably, arginine and proline metabolism were the most significantly altered amino acid metabolic pathways following lowdose RP intervention. In conclusion, RP can ameliorate general symptoms, inhibit colonic inflammation, and maintain intestinal mucosal barrier integrity in UC mice by modulating gut microbiota composition and arginine and proline metabolism.
Animals
;
Gastrointestinal Microbiome/drug effects*
;
Colitis, Ulcerative/genetics*
;
Mice
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Polysaccharides/administration & dosage*
;
Angelica/chemistry*
;
Humans
;
Colon/metabolism*
;
Disease Models, Animal
;
Mucin-2/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*

Result Analysis
Print
Save
E-mail