1.Molecular basis and homeostatic regulation of Zinc taste.
Rui LUO ; Yuxiang ZHANG ; Yinjun JIA ; Yan ZHANG ; Zongyang LI ; Jieqing ZHAO ; Ting LIU ; Wei ZHANG
Protein & Cell 2022;13(6):462-469
2.Research progress on the role of glucose in regulating immune homeostasis.
Hui Yi CHEN ; Hai Li WU ; Hui WANG ; Xiao Guang LI
Chinese Journal of Preventive Medicine 2023;57(11):1882-1887
Glucose is the central nutrient for energy metabolism and life support in the human body. As the main energy substance of the body, glucose is essential for the normal function of immune cells and their proliferation; when glucose homeostasis is disrupted in the body, it may lead to impaired immune system function and pathological conditions. Exploring the relationship between glucose metabolism and immune regulation can help establish the gene regulatory network and figure out potential pathogenic mechanisms under physiological and pathological conditions. This article reviews the current scientific research progress on glucose metabolism and immunity, mainly focusing on the physiological regulatory functions of glucose in maintaining the homeostasis of innate and acquired immunity; and summarizes the research progress on the effects and mechanisms of glucose on tumor immunity and its related therapies under pathological conditions, taking tumors as an example.
Humans
;
Glucose/metabolism*
;
Homeostasis/physiology*
3.Research progress on the role of glucose in regulating immune homeostasis.
Hui Yi CHEN ; Hai Li WU ; Hui WANG ; Xiao Guang LI
Chinese Journal of Preventive Medicine 2023;57(11):1882-1887
Glucose is the central nutrient for energy metabolism and life support in the human body. As the main energy substance of the body, glucose is essential for the normal function of immune cells and their proliferation; when glucose homeostasis is disrupted in the body, it may lead to impaired immune system function and pathological conditions. Exploring the relationship between glucose metabolism and immune regulation can help establish the gene regulatory network and figure out potential pathogenic mechanisms under physiological and pathological conditions. This article reviews the current scientific research progress on glucose metabolism and immunity, mainly focusing on the physiological regulatory functions of glucose in maintaining the homeostasis of innate and acquired immunity; and summarizes the research progress on the effects and mechanisms of glucose on tumor immunity and its related therapies under pathological conditions, taking tumors as an example.
Humans
;
Glucose/metabolism*
;
Homeostasis/physiology*
4.Progress of autophagy in regulating liver homeostasis.
Hui HUANG ; Hongyan LI ; Wei ZOU
Chinese Journal of Biotechnology 2016;32(9):1185-1193
Liver is the largest human digestive gland and the most important metabolic organ. When autophagy was proposed during studying liver lysosomes in the 1960s, it was found that nutrient levels and hormones could influence autophagy activity. Recent studies show that autophagy is not only normal physiological processes, but also involved in the regulation of many pathological processes. This article summarizes the role of liver autophagy in the maintenance of homeostasis in the healthy liver, and provides new ideas for liver physiology and treating diseases associated with autophagy disorders.
Animals
;
Autophagy
;
Homeostasis
;
Humans
;
Liver
;
physiology
5.Research progress on the effect of mitochondrial network remodeling on macrophages.
Lianlian ZHU ; Xiangmin KONG ; Wei ZHU
Chinese Journal of Cellular and Molecular Immunology 2023;39(7):656-662
Remodeling of the mitochondrial network is an important process in the maintenance of cellular homeostasis and is closely related to mitochondrial function. Interactions between the biogenesis of new mitochondria and the clearance of damaged mitochondria (mitophagy) is an important manifestation of mitochondrial network remodeling. Mitochondrial fission and fusion act as a bridge between biogenesis and mitophagy. In recent years, the importance of these processes has been described in a variety of tissues and cell types and under a variety of conditions. For example, robust remodeling of the mitochondrial network has been reported during the polarization and effector function of macrophages. Previous studies have also revealed the important role of mitochondrial morphological structure and metabolic changes in regulating the function of macrophages. Therefore, the processes that regulate remodeling of the mitochondrial network also play a crucial role in the immune response of macrophages. In this paper, we focus on the molecular mechanisms of mitochondrial regeneration, fission, fusion, and mitophagy in the process of mitochondrial network remodeling, and integrate these mechanisms to investigate their biological roles in macrophage polarization, inflammasome activation, and efferocytosis.
Mitochondria
;
Mitophagy
;
Homeostasis/physiology*
;
Phagocytosis
;
Macrophages/metabolism*
6.Molecular mechanisms of cellular metabolic homeostasis in stem cells.
Xiaoyu LI ; Ou JIANG ; Songlin WANG
International Journal of Oral Science 2023;15(1):52-52
Many tissues and organ systems have intrinsic regeneration capabilities that are largely driven and maintained by tissue-resident stem cell populations. In recent years, growing evidence has demonstrated that cellular metabolic homeostasis plays a central role in mediating stem cell fate, tissue regeneration, and homeostasis. Thus, a thorough understanding of the mechanisms that regulate metabolic homeostasis in stem cells may contribute to our knowledge on how tissue homeostasis is maintained and provide novel insights for disease management. In this review, we summarize the known relationship between the regulation of metabolic homeostasis and molecular pathways in stem cells. We also discuss potential targets of metabolic homeostasis in disease therapy and describe the current limitations and future directions in the development of these novel therapeutic targets.
Stem Cells/metabolism*
;
Homeostasis/physiology*
;
Cell Differentiation/physiology*
7.Integrated analysis of microRNA and mRNA expressions in peripheral blood leukocytes of Warmblood horses before and after exercise
Hang Ah KIM ; Myung Chul KIM ; Na Yon KIM ; Doug Young RYU ; Hong Seok LEE ; Yongbaek KIM
Journal of Veterinary Science 2018;19(1):99-106
Exercise capacity is a valuable trait in horses, and it has been used as a horse selection criterion. Although exercise affects molecular homeostasis and adaptation in horses, the mechanisms underlying these effects are not fully described. This study was carried out to identify changes in the blood profiles of microRNAs (miRNAs) and mRNAs induced by exercise in horse leukocytes. Total RNAs isolated from the peripheral blood leukocytes of four Warmblood horses before and after exercise were subjected to next-generation sequencing (NGS) and microarray analyses to determine the miRNA and mRNA expression profiles, respectively. The expressions of 6 miRNAs, including 4 known and 2 novel miRNAs, were altered by exercise. The predicted target genes of the differentially expressed miRNAs identified by NGS were matched to the exercise-induced mRNAs determined by microarray analysis. Five genes (LOC100050849, LOC100054517, KHDRBS3, LOC100053996, and LOC100062720) from the microarray analysis were matched to the predicted target genes of the 6 miRNAs. The subset of mRNAs and miRNAs affected by exercise in peripheral blood leukocytes may be useful in elucidating the molecular mechanisms of exercise-associated physiology in horses.
Homeostasis
;
Horses
;
Leukocytes
;
Microarray Analysis
;
MicroRNAs
;
Physiology
;
RNA
;
RNA, Messenger
8.Exosome-mediated regulatory mechanisms in skeletal muscle: a narrative review.
Zhaolu WANG ; Jinjin YANG ; Xiaohui SUN ; Xi SUN ; Gongshe YANG ; Xin'e SHI
Journal of Zhejiang University. Science. B 2023;24(1):1-14
Skeletal muscle plays a paramount role in physical activity, metabolism, and energy balance, while its homeostasis is being challenged by multiple unfavorable factors such as injury, aging, or obesity. Exosomes, a subset of extracellular vesicles, are now recognized as essential mediators of intercellular communication, holding great clinical potential in the treatment of skeletal muscle diseases. Herein, we outline the recent research progress in exosomal isolation, characterization, and mechanism of action, and emphatically discuss current advances in exosomes derived from multiple organs and tissues, and engineered exosomes regarding the regulation of physiological and pathological development of skeletal muscle. These remarkable advances expand our understanding of myogenesis and muscle diseases. Meanwhile, the engineered exosome, as an endogenous nanocarrier combined with advanced design methodologies of biomolecules, will help to open up innovative therapeutic perspectives for the treatment of muscle diseases.
Exosomes/physiology*
;
Muscle, Skeletal/metabolism*
;
Cell Communication
;
Homeostasis
9.Nuclear receptors and renal water transport regulation.
Acta Physiologica Sinica 2018;70(6):630-638
The function of kidney is maintaining water balance of our body through regulation of urine concentration and dilution. The aquaporins are molecular basis of renal urine production and water transport, and their expression and membrane translocation are regulated delicately. Nuclear receptors are a superfamily of ligand-activated transcription factors consisting of 48 members in human. They widely participate in a variety of physiological and pathophysiological regulation including growth and development, glucose and lipid metabolism, inflammation, immunology by regulating target gene transcription and expression. Increasing evidence demonstrates that these receptors are involved in the regulation of aquaporins expression and membrane translocation in kidney, thereby playing a major role in water homeostasis. Here we review the role of nuclear receptors in regulating renal water transport.
Aquaporins
;
physiology
;
Biological Transport
;
Homeostasis
;
Humans
;
Kidney
;
physiology
;
Receptors, Cytoplasmic and Nuclear
;
physiology
;
Water
10.Study on homeostasis and circadian rhythm of attention performance of different chronotypes in sleep deprivation.
Jingqiang LI ; Qingfu WANG ; Lu ZHANG ; Xining ZHANG ; Yanru ZHOU ; Huanxi ZHANG
Journal of Biomedical Engineering 2022;39(2):248-256
Difference of chronotypes makes influence to cognitive performance of individuals in routine duties. In this paper, 55 subjects with different chronotypes were subjected to continuous sleep deprivation for 30 h by using the constant routine protocol, during which core body temperature was measured continuously, and subjective sleepiness self-rating and the performance of selective attention were measured hourly. The results showed that the phase difference of core body temperature has no significant difference, yet the amplitude and term difference among the three chronotypes are significant. There was an advance in phase between subjective sleepiness self-rating and core body temperature, and the self-rating sleepiness of evening type came the latest, and the self-rating sleepiness of morning type dissipated the fastest. The response time of selective attention showed a 2 h phase delay with subjective sleepiness self-rating. And the analysis of core body temperature showed that the later the chronotype was, the greater the phase delay was. The correct rate of selective attention of different chronotypes were inconsistent with delay of subjective sleepiness self-rating and core body temperature. We provide reference for industry, aviation, military, medical and other fields to make a more scientific scheduling/ shifting based on cognitive performance characteristics of different chronotypes.
Attention/physiology*
;
Circadian Rhythm/physiology*
;
Homeostasis
;
Humans
;
Sleep/physiology*
;
Sleep Deprivation
;
Sleepiness