1.Effects of ATP on Pacemaker Activity of Interstitial Cells of Cajal from the Mouse Small Intestine
Il Koo PARK ; Jin Ho KIM ; Chan Guk PARK ; Man Yoo KIM ; Shankar Prasad PARAJULI ; Chan Sik HONG ; Seok CHOI ; Jae Yeoul JUN
Chonnam Medical Journal 2018;54(1):63-71
Purinergic receptors play an important role in regulating gastrointestinal (GI) motility. Interstitial cells of Cajal (ICCs) are pacemaker cells that regulate GI smooth muscle activity. We studied the functional roles of external adenosine 5′-triphosphate (ATP) on pacemaker activity in cultured ICCs from mouse small intestines by using the whole-cell patch clamp technique and intracellular Ca²⁺ ([Ca²⁺]ᵢ) imaging. External ATP dose-dependently depolarized the resting membrane and produced tonic inward pacemaker currents, and these effects were antagonized by suramin, a purinergic P2 receptor antagonist. ATP-induced effects on pacemaker currents were suppressed by an external Na⁺-free solution and inhibited by the nonselective cation channel blockers, flufenamic acid and niflumic acid. The removal of external Ca²⁺ or treatment with thapsigargin (inhibitor of Ca²⁺ uptake into endoplasmic reticulum) inhibited the ATP-induced effects on pacemaker currents. Spontaneous [Ca²⁺]ᵢ oscillations were enhanced by external ATP. These results suggest that external ATP modulates pacemaker activity by activating nonselective cation channels via external Ca²⁺ influx and [Ca²⁺]ᵢ release from the endoplasmic reticulum. Thus, it seems that activating the purinergic P2 receptor may modulate GI motility by acting on ICCs in the small intestine.
Adenosine
;
Adenosine Triphosphate
;
Animals
;
Endoplasmic Reticulum
;
Flufenamic Acid
;
Interstitial Cells of Cajal
;
Intestine, Small
;
Membranes
;
Mice
;
Muscle, Smooth
;
Niflumic Acid
;
Pacemaker, Artificial
;
Receptors, Purinergic
;
Receptors, Purinergic P2
;
Suramin
;
Thapsigargin
2.Compound K attenuates glucose intolerance and hepatic steatosis through AMPK-dependent pathways in type 2 diabetic OLETF rats.
Yoo Cheol HWANG ; Da Hee OH ; Moon Chan CHOI ; Sang Yeoul LEE ; Kyu Jeong AHN ; Ho Yeon CHUNG ; Sung Jig LIM ; Sung Hyun CHUNG ; In Kyung JEONG
The Korean Journal of Internal Medicine 2018;33(2):347-355
BACKGROUND/AIMS: Non-alcoholic fatty liver disease is associated with insulin resistance. Compound K (CK) is the final metabolite of panaxadiol ginsenosides that have been shown to exert antidiabetic effects. However, the molecular mechanism of the antidiabetic effects in the liver have not been elucidated; further, whether CK has beneficial effects in hepatosteatosis remains unclear. Therefore, we evaluated the effect of CK on hepatosteatosis as well as its mechanism in high-fat diet (HFD)-fed type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. METHODS: Twenty-four-week-old male OLETF rats were assigned to four groups: control (saline), CK 10 mg/kg, CK 25 mg/kg, or metformin 300 mg/kg (positive control); all treatments were administered orally for 12 weeks. RESULTS: Fasting glucose levels of the CK25 group were significantly lower than those of the control group during the 12 weeks. The results of the oral glucose tolerance test showed that both the glucose concentration after glucose loading and the fasting insulin levels of the CK25 group were significantly lower than those of the control. Hepatosteatosis was significantly improved by CK25. CK25 and metformin significantly increased the phosphorylation of hepatic adenosine monophosphate-activated protein kinase (AMPK). CK25 significantly inhibited the expression of sterol regulatory element-binding protein-1c and fatty acid synthase, while upregulating that of peroxisome proliferator-activated receptor-α and carnitine palmitoyltransferase-1. CONCLUSIONS: CK improved glucose intolerance and hepatosteatosis in HFD-fed OLETF rats through AMPK activation, which has dual mode of action that involves decreasing the synthesis of fatty acids and increasing fatty acid oxidation.
Adenosine
;
AMP-Activated Protein Kinases
;
Animals
;
Carnitine
;
Diabetes Mellitus, Type 2
;
Diet, High-Fat
;
Fasting
;
Fatty Acids
;
Ginsenosides
;
Glucose Intolerance*
;
Glucose Tolerance Test
;
Glucose*
;
Humans
;
Insulin
;
Insulin Resistance
;
Liver
;
Male
;
Metformin
;
Non-alcoholic Fatty Liver Disease
;
Peroxisomes
;
Phosphorylation
;
Protein Kinases
;
Rats
;
Rats, Inbred OLETF*
3.Direct vascular actions of quercetin in aorta from renal hypertensive rats.
Seok CHOI ; Kwon Ho RYU ; Sang Hag PARK ; Jae Yeoul JUN ; Byung Chul SHIN ; Jong Hoon CHUNG ; Cheol Ho YEUM
Kidney Research and Clinical Practice 2016;35(1):15-21
BACKGROUND: Chronic treatment with the dietary flavonoid quercetin is known to lower blood pressure and restore endothelial dysfunction in animal models of hypertension. This study investigated the direct effects of quercetin on vascular response in chronic 2-kidney, 1-clip (2K1C) renal hypertensive rats. The effects of antioxidant vitamin ascorbic acid on the vasoreactivity were also examined. METHODS: 2K1C renal hypertension was induced by clipping the left renal artery; age-matched rats that received sham treatment served as controls. Thoracic aortae were mounted in tissue baths for the measurement of isometric tension. RESULTS: Relaxant responses to acetylcholine were significantly attenuated in 2K1C rats in comparison with sham rats. Quercetin or ascorbic acid augmented acetylcholine-induced relaxation in 2K1C rats, whereas no significant differences were noted in sham rats. The relaxation response to sodium nitroprusside was comparable between 2K1C and sham rats, and sodium nitroprusside-induced relaxation was not altered by quercetin or ascorbic acid in either group. The contractile response to phenylephrine was significantly enhanced in 2K1C rats compared with sham rats. Phenylephrine-induced contraction was inhibited by pretreatment with quercetin or ascorbic acid in 2K1C rats, whereas neither chemical affected responses in sham rats. N(w)-nitro-L-arginine methyl ester markedly augmented the contractile response to phenylephrine in sham rats, whereas no significant differences were observed in 2K1C rats. Quercetin or ascorbic acid did not affect phenylephrine-induced contraction in the presence of N(w)-nitro-L-arginine methyl ester in either 2K1C or sham rats. CONCLUSION: Acute exposure to quercetin appears to improve endothelium-dependent relaxation and inhibit the contractile response, similar to the effect of ascorbic acid in 2K1C hypertension. These results partially explain the vascular beneficial effects of quercetin in renal hypertension.
Acetylcholine
;
Animals
;
Aorta*
;
Aorta, Thoracic
;
Ascorbic Acid
;
Baths
;
Blood Pressure
;
Hypertension
;
Hypertension, Renal
;
Models, Animal
;
Nitroprusside
;
Phenylephrine
;
Placebos
;
Quercetin*
;
Rats*
;
Relaxation
;
Renal Artery
;
Sodium
;
Vitamins
4.Mechanisms of phytoestrogen biochanin A-induced vasorelaxation in renovascular hypertensive rats.
Seok CHOI ; Won Suk JUNG ; Nam Soo CHO ; Kwon Ho RYU ; Jae Yeoul JUN ; Byung Chul SHIN ; Jong Hoon CHUNG ; Cheol Ho YEUM
Kidney Research and Clinical Practice 2014;33(4):181-186
BACKGROUND: The plant-derived estrogen biochanin A is known to cause vasodilation, but its mechanism of action in hypertension remains unclear. This study was undertaken to investigate the effects and mechanisms of biochanin A on the thoracic aorta in two-kidney, one clip (2K1C) renovascular hypertensive rats. METHODS: Hypertension was induced by clipping the left renal artery, and control age-matched rats were sham treated. Thoracic aortae were mounted in tissue baths to measure isometric tension. RESULTS: Biochanin A caused concentration-dependent relaxation in aortic rings from 2K1C hypertensive and sham-treated rats, which was greater in 2K1C rats than in sham rats. Biochanin A-induced relaxation was significantly attenuated by removing the endothelium in aortic rings from 2K1C rats, but not in sham rats. Nomega-Nitro-L-arginine methylester, a nitric oxide synthase inhibitor, or indomethacin, a cyclooxygenase inhibitor, did not affect the biochanin A-induced relaxation in aortic rings from 2K1C and sham rats. By contrast, treatment with glibenclamide, a selective inhibitor of adenosine triphosphate-sensitive K+ channels, ortetraethy-lammonium, an inhibitor of Ca2+-activated K+ channels, significantly reduced biochanin A-induced relaxation in aortic rings from both groups. However, 4-aminopyridine, a selective inhibitor of voltage-dependent K+ channels, inhibited the relaxation induced by biochanin A in 2K1C rats, whereas no significant differences were observed in sham rats. CONCLUSION: These results suggest that the enhanced relaxation caused by biochanin A in aortic rings from hypertensive rats is endothelium dependent. Vascular smooth muscle K+ channels may be involved in biochanin A-induced relaxation in aortae from hypertensive and normotensive rats. In addition, an endothelium-derived activation of voltage-dependent K+ channels contributes, at least in part, to the relaxant effect of biochanin A in renovascular hypertension.
4-Aminopyridine
;
Adenosine
;
Animals
;
Aorta
;
Aorta, Thoracic
;
Baths
;
Endothelium
;
Estrogens
;
Glyburide
;
Hypertension
;
Hypertension, Renovascular
;
Indomethacin
;
Muscle, Smooth, Vascular
;
Nitric Oxide Synthase
;
Phytoestrogens*
;
Potassium Channels, Calcium-Activated
;
Prostaglandin-Endoperoxide Synthases
;
Rats*
;
Relaxation
;
Renal Artery
;
Vasodilation*
5.Effects of oxidative stress on endothelial modulation of contractions in aorta from renal hypertensive rats.
Seok CHOI ; Hye Rang SHIN ; Sang Hoon KIM ; Mi Jung LEE ; Jae Yeoul JUN ; Hyun Lee KIM ; Jong Hoon CHUNG ; Cheol Ho YEUM
Kidney Research and Clinical Practice 2014;33(1):19-25
BACKGROUND: Endothelial dysfunction is linked to exaggerated production of superoxide anions. This study was conducted to examine the effects of oxidative stress on endothelial modulation of contractions in chronic two-kidney, one-clip (2K1C) renal hypertensive rats. METHODS: The 2K1C hypertension was induced by clipping the left renal artery; age-matched rats receiving sham treatment served as controls. Thoracic aortae were isolated and mounted in tissue baths for measurement of isometric tension. RESULTS: Norepinephrine-induced contraction was augmented by the removal of the endothelium, which was more pronounced in sham rats than in 2K1C rats. Nomega-nitro-L-arginine methyl ester, an inhibitor of nitric oxide production, had a similar augmenting effect. Vitamin C inhibited the contraction in aortic rings with intact endothelium from 2K1C rats but not from sham rats. The contraction was also suppressed by treatment with diphenyleneiodonium or apocynin, inhibitors of nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide phosphate (NADH/NADPH) oxidase, in the aortae with intact endothelium from 2K1C rats but not in those from sham rats. Superoxide anions generated by xanthine oxidase/hypoxanthine enhanced the contraction in the aortae with intact endothelium from sham rats, but had no effect in 2K1C rats. Enhanced contractile responses to norepinephrine by xanthine oxidase/hypoxanthine in sham rats were reversed by vitamin C. CONCLUSION: These results suggest that the effect on endothelial modulation of endothelium-derived nitric oxide is impaired in 2K1C hypertension. The impairment is, at least in part, related to increased production of superoxide anions by NADH/NADPH oxidase.
Adenine
;
Animals
;
Aorta*
;
Aorta, Thoracic
;
Ascorbic Acid
;
Baths
;
Endothelium
;
Hypertension
;
Hypertension, Renal
;
Niacinamide
;
Nitric Oxide
;
Norepinephrine
;
Oxidative Stress*
;
Oxidoreductases
;
Placebos
;
Rats*
;
Renal Artery
;
Superoxides
;
Xanthine
6.Effects of Lubiprostone on Pacemaker Activity of Interstitial Cells of Cajal from the Mouse Colon.
Han Yi JIAO ; Dong Hyun KIM ; Jung Suk KI ; Kwon Ho RYU ; Seok CHOI ; Jae Yeoul JUN
The Korean Journal of Physiology and Pharmacology 2014;18(4):341-346
Lubiprostone is a chloride (Cl-) channel activator derived from prostaglandin E1 and used for managing constipation. In addition, lubiprostone affects the activity of gastrointestinal smooth muscles. Interstitial cells of Cajal (ICCs) are pacemaker cells that generate slow-wave activity in smooth muscles. We studied the effects of lubiprostone on the pacemaker potentials of colonic ICCs. We used the whole-cell patch-clamp technique to determine the pacemaker activity in cultured colonic ICCs obtained from mice. Lubiprostone hyperpolarized the membrane and inhibited the generation of pacemaker potentials. Prostanoid EP1, EP2, EP3, and EP4 antagonists (SC-19220, PF-04418948, 6-methoxypyridine-2-boronc acid N-phenyldiethanolamine ester, and GW627368, respectively) did not block the response to lubiprostone. L-NG-nitroarginine methyl ester (L-NAME, an inhibitor of nitric oxide synthase) and 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ, an inhibitor of guanylate cyclase) did not block the response to lubiprostone. In addition, tetraethylammonium (TEA, a voltage-dependent potassium [K+] channel blocker) and apamin (a calcium [Ca2+]-dependent K+ channel blocker) did not block the response to lubiprostone. However, glibenclamide (an ATP-sensitive K+ channel blocker) blocked the response to lubiprostone. Similar to lubiprostone, pinacidil (an opener of ATP-sensitive K+ channel) hyperpolarized the membrane and inhibited the generation of pacemaker potentials, and these effects were inhibited by glibenclamide. These results suggest that lubiprostone can modulate the pacemaker potentials of colonic ICCs via activation of ATP-sensitive K+ channel through a prostanoid EP receptor-independent mechanism.
Alprostadil
;
Animals
;
Apamin
;
Calcium
;
Colon*
;
Constipation
;
Glyburide
;
Interstitial Cells of Cajal*
;
Membranes
;
Mice*
;
Muscle, Smooth
;
Nitric Oxide
;
Patch-Clamp Techniques
;
Pinacidil
;
Potassium
;
Tetraethylammonium
;
Lubiprostone
7.Endothelium-dependent vasodilation by ferulic acid in aorta from chronic renal hypertensive rats.
Seok CHOI ; Hyun Il KIM ; Sang Hag PARK ; Mi Jung LEE ; Jae Yeoul JUN ; Hyun Lee KIM ; Jong Hoon CHUNG ; Cheol Ho YEUM
Kidney Research and Clinical Practice 2012;31(4):227-233
BACKGROUND: Ferulic acid (FA) is a naturally occurring nutritional compound. Although it has been shown to have antihypertensive effects, its effects on vascular function have not been intensively established. The aim of this study was to assess the vasoreactivity of FA in chronic two-kidney, one-clip (2K1C) renal hypertensive rats. METHODS: Hypertension was induced in 2K1C rats by clipping the left renal artery and age-matched rats that received a sham treatment served as a control. Thoracic aortas were mounted in tissue baths to measure isometric tension. The effects of FA on vasodilatory responses were evaluated based on contractile responses induced by phenylephrine in the aortic rings obtained from both 2K1C and sham rats. Basal nitric oxide (NO) bioavailability in the aorta was determined by the contractile response induced by NO synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME). RESULTS: FA induced concentration-dependent relaxation responses which were greater in 2K1C hypertensive rats than in sham-clipped control rats. This relaxation induced by FA was partially blocked by the removal of endothelium or by pretreating with L-NAME. L-NAME-induced contractile responses were augmented by FA in 2K1C rats, while no significant differences were noted in sham rats. FA improved acetylcholine-induced endothelium-dependent vasodilation in 2K1C rats, but not in sham rats. The simultaneous addition of hydroxyhydroquinone significantly inhibited the increase in acetylcholine-induced vasodilation by FA. CONCLUSION: These results suggest that FA restores endothelial function by altering the bioavailability of NO in 2K1C hypertensive rats. The results explain, in part, the mechanism underlying the vascular effects of FA in chronic renal hypertension.
Animals
;
Aorta
;
Aorta, Thoracic
;
Baths
;
Biological Availability
;
Coumaric Acids
;
Endothelium
;
Hydroquinones
;
Hypertension
;
Hypertension, Renal
;
NG-Nitroarginine Methyl Ester
;
Nitric Oxide
;
Nitric Oxide Synthase
;
Phenylephrine
;
Placebos
;
Rats
;
Relaxation
;
Renal Artery
;
Salicylamides
;
Vasodilation
8.ABO Genotyping of a Neonate with Mixed Field Agglutination.
Ju Yeon KIM ; Hanui KIM ; Jae Yeoul CHOI ; Yoon Ho KIM ; Jang Su KIM ; Myung Han KIM ; Young Ki KIM ; Kap No LEE ; Chae Seung LIM
Korean Journal of Blood Transfusion 2011;22(2):171-176
Mixed field agglutination is an important, but rare phenomenon of ABO blood grouping. Contrary to adults, neonatal red blood cells are immature and they present a weak ABO expression, and sometimes this result in a mixed field agglutination pattern. We report here on a case of a neonate who presented with mixed field agglutination on the ABO blood grouping during serologic testing and the neonate had a normal ABO genotype.
Adult
;
Agglutination
;
Blood Grouping and Crossmatching
;
Erythrocytes
;
Genotype
;
Humans
;
Infant, Newborn
;
Serologic Tests
9.Direct Vascular Actions of Indapamide in Aorta from Renal Hypertensive Rats.
Seok CHOI ; Hee Wook WHI ; Mi Jung LEE ; Jae Yeoul JUN ; Hyun Lee KIM ; Jong Hoon CHUNG ; Hye Rang SHIN ; Hyun Jung OH ; Cheol Ho YEUM
Korean Journal of Nephrology 2011;30(5):459-467
PURPOSE: Thiazide diuretics exert their hypotensive efficacy through a combined vasodilator and diuretic effect. The present study was conducted to assess the inhibitory effect of thiazide diuretic, hydrochlorothiazide, and the thiazide-like diuretics, indapamide and chlorthalidone on contractile responses to norepinephrine and arginine vasopressin in aortic rings from 2K1C renal hypertensive and sham-clipped normotensive rats. METHODS: 2K1C hypertension was made by clipping the left renal artery and age-matched control rats received a sham treatment. Changes in the tension of aortic ring preparations were measured isometrically. RESULTS: Indapamide inhibits the contractile responses to norepinephrine and vasopressin in aortic rings from 2K1C rats, while it did not modify in control rats. The inhibitory effect of indapamide was abolished by endothelium removal. Hydrochlorothiazide or chlorthalidone did not affect the vasoconstriction induced by norepinephrine and vasopressin either in sham or in 2K1C hypertensive rats. CONCLUSION: These results suggest that indapamide inhibits the contractile responses to norepinephrine and vasopressin via an endothelium-dependent mechanism in 2K1C renal hypertension.
Animals
;
Aorta
;
Arginine Vasopressin
;
Chlorthalidone
;
Diuretics
;
Endothelium
;
Hydrochlorothiazide
;
Hypertension
;
Hypertension, Renal
;
Indapamide
;
Norepinephrine
;
Placebos
;
Rats
;
Renal Artery
;
Salicylamides
;
Sodium Chloride Symporter Inhibitors
;
Vasoconstriction
;
Vasodilation
;
Vasopressins
10.5-Hydroxytryptamine Generates Tonic Inward Currents on Pacemaker Activity of Interstitial Cells of Cajal from Mouse Small Intestine.
Pawan Kumar SHAHI ; Seok CHOI ; Dong Chuan ZUO ; Cheol Ho YEUM ; Pyung Jin YOON ; Jun LEE ; Young Dae KIM ; Chan Guk PARK ; Man Yoo KIM ; Hye Rang SHIN ; Hyun Jung OH ; Jae Yeoul JUN
The Korean Journal of Physiology and Pharmacology 2011;15(3):129-135
In this study we determined whether or not 5-hydroxytryptamine (5-HT) has an effect on the pacemaker activities of interstitial cells of Cajal (ICC) from the mouse small intestine. The actions of 5-HT on pacemaker activities were investigated using a whole-cell patch-clamp technique, intracellular Ca2+ ([Ca2+]i) analysis, and RT-PCR in ICC. Exogenously-treated 5-HT showed tonic inward currents on pacemaker currents in ICC under the voltage-clamp mode in a dose-dependent manner. Based on RT-PCR results, we found the existence of 5-HT2B, 3, 4, and 7 receptors in ICC. However, SDZ 205557 (a 5-HT4 receptor antagonist), SB 269970 (a 5-HT7 receptor antagonist), 3-tropanylindole - 3 - carboxylate methiodide (3-TCM; a 5-HT3 antagonist) blocked the 5-HT-induced action on pacemaker activity, but not SB 204741 (a 5-HT2B receptor antagonist). Based on [Ca2+]i analysis, we found that 5-HT increased the intensity of [Ca2+]i. The treatment of PD 98059 or JNK II inhibitor blocked the 5-HT-induced action on pacemaker activity of ICC, but not SB 203580. In summary, these results suggest that 5-HT can modulate pacemaker activity through 5-HT3, 4, and 7 receptors via [Ca2+]i mobilization and regulation of mitogen-activated protein kinases.
Animals
;
Flavonoids
;
Gastrointestinal Motility
;
Imidazoles
;
Interstitial Cells of Cajal
;
Intestine, Small
;
Mice
;
Mitogen-Activated Protein Kinases
;
para-Aminobenzoates
;
Patch-Clamp Techniques
;
Phenols
;
Pyridines
;
Receptor, Serotonin, 5-HT2B
;
Receptors, Serotonin
;
Receptors, Serotonin, 5-HT4
;
Serotonin
;
Sulfonamides

Result Analysis
Print
Save
E-mail