1.The engagement of histone lysine methyltransferases with nucleosomes: structural basis, regulatory mechanisms, and therapeutic implications.
Yanjing LI ; Kexue GE ; Tingting LI ; Run CAI ; Yong CHEN
Protein & Cell 2023;14(3):165-179
Histone lysine methyltransferases (HKMTs) deposit methyl groups onto lysine residues on histones and play important roles in regulating chromatin structure and gene expression. The structures and functions of HKMTs have been extensively investigated in recent decades, significantly advancing our understanding of the dynamic regulation of histone methylation. Here, we review the recent progress in structural studies of representative HKMTs in complex with nucleosomes (H3K4, H3K27, H3K36, H3K79, and H4K20 methyltransferases), with emphasis on the molecular mechanisms of nucleosome recognition and trans-histone crosstalk by these HKMTs. These structural studies inform HKMTs' roles in tumorigenesis and provide the foundations for developing new therapeutic approaches targeting HKMTs in cancers.
Nucleosomes
;
Histones/metabolism*
;
Histone-Lysine N-Methyltransferase/metabolism*
;
Lysine/metabolism*
;
Methyltransferases/metabolism*
;
Methylation
2.Research Progress of Role and Mechanism of SETD7 in Tumor Occurrence and Progression.
Chinese Journal of Lung Cancer 2023;26(1):38-45
The occurence and development of tumors is a complicated process, which not only depends on the mutation or deletion of genes, but also is affected by epigenetic regulation. Accumulating evidences have shown that epigenetic modifications play fundamental roles in transcriptional regulation, heterochromatin formation, X chromosome inactivation, DNA damage response and tumor development. SET domain containing lysine methyltransferase 7 (SETD7) was initially identified as an important lysine methyltransferase, which methylated histone and non-histone proteins. These modifications play fundamental roles. Once this modification disorders, it can directly lead to cell abnormalities and cause many diseases. Studies have shown that SETD7 is related to the occurence and development of various tumors, but the methylation sites of SETD7 and its regulatory mechanism have not been fully elucidated. This article summarizes the research progress of the role of SETD7 on histone and non-histone methylation modification in tumors and the molecular mechanism, in order to provide new therapeutic targets for tumor pathogenesis and diagnosis.
.
Humans
;
Epigenesis, Genetic
;
Histone-Lysine N-Methyltransferase/metabolism*
;
Lysine/metabolism*
;
Lung Neoplasms/genetics*
;
Histones/metabolism*
3.Epigenetic Cross-Talk between DNA Methylation and Histone Modifications in Human Cancers.
Yonsei Medical Journal 2009;50(4):455-463
DNA methylation, histone modifications, and the chromatin structure are profoundly altered in human cancers. The silencing of cancer-related genes by these epigenetic regulators is recognized as a key mechanism in tumor formation. Recent findings revealed that DNA methylation and histone modifications appear to be linked to each other. However, it is not clearly understood how the formation of histone modifications may affect DNA methylation and which genes are relevantly involved with tumor formation. The presence of histone modifications does not always link to DNA methylation in human cancers, which suggests that another factor is required to connect these two epigenetic mechanisms. In this review, examples of studies that demonstrated the relationship between histone modifications and DNA methylation in human cancers are presented and the potential implications of these epigenetic mechanisms in human neoplasia are discussed.
DNA Methylation/*physiology
;
Epigenesis, Genetic/*physiology
;
Histone-Lysine N-Methyltransferase/metabolism
;
Histones/*metabolism
;
Humans
;
Models, Biological
;
Neoplasms/*genetics
4.Epigenetic Cross-Talk between DNA Methylation and Histone Modifications in Human Cancers.
Yonsei Medical Journal 2009;50(4):455-463
DNA methylation, histone modifications, and the chromatin structure are profoundly altered in human cancers. The silencing of cancer-related genes by these epigenetic regulators is recognized as a key mechanism in tumor formation. Recent findings revealed that DNA methylation and histone modifications appear to be linked to each other. However, it is not clearly understood how the formation of histone modifications may affect DNA methylation and which genes are relevantly involved with tumor formation. The presence of histone modifications does not always link to DNA methylation in human cancers, which suggests that another factor is required to connect these two epigenetic mechanisms. In this review, examples of studies that demonstrated the relationship between histone modifications and DNA methylation in human cancers are presented and the potential implications of these epigenetic mechanisms in human neoplasia are discussed.
DNA Methylation/*physiology
;
Epigenesis, Genetic/*physiology
;
Histone-Lysine N-Methyltransferase/metabolism
;
Histones/*metabolism
;
Humans
;
Models, Biological
;
Neoplasms/*genetics
5.Links between Serine Biosynthesis Pathway and Epigenetics in Cancer Metabolism.
Clinical Nutrition Research 2018;7(3):153-160
Cancer metabolism is considered as one of major cancer hallmarks. It is important to understand cancer-specific metabolic changes and its impact on cancer biology to identify therapeutic potentials. Among cancer-specific metabolic changes, a role of serine metabolism has been discovered in various cancer types. Upregulation of serine synthesis pathway (SSP) supports cell proliferation and metastasis. The change of serine metabolism is, in part, mediated by epigenetic modifiers, such as Euchromatic histone-lysine N-methyltransferase 2 and Lysine Demethylase 4C. On the other hand, SSP also influences epigenetic landscape such as methylation status of nucleic acids and histone proteins via affecting S-adenosyl methionine production. In the review, we highlight recent evidences on interactions between SSP and epigenetic regulation in cancer. It may provide an insight on roles and regulation of SSP in cancer metabolism and the potential of serine metabolism for cancer therapy.
Biology
;
Cell Proliferation
;
Epigenomics*
;
Hand
;
Histone-Lysine N-Methyltransferase
;
Histones
;
Lysine
;
Metabolism*
;
Methionine
;
Methylation
;
Neoplasm Metastasis
;
Nucleic Acids
;
Serine*
;
Up-Regulation
6.Dental stem cell-derived extracellular vesicles transfer miR-330-5p to treat traumatic brain injury by regulating microglia polarization.
Ye LI ; Meng SUN ; Xinxin WANG ; Xiaoyu CAO ; Na LI ; Dandan PEI ; Ang LI
International Journal of Oral Science 2022;14(1):44-44
Traumatic brain injury (TBI) contributes to the key causative elements of neurological deficits. However, no effective therapeutics have been developed yet. In our previous work, extracellular vesicles (EVs) secreted by stem cells from human exfoliated deciduous teeth (SHED) offered new insights as potential strategies for functional recovery of TBI. The current study aims to elucidate the mechanism of action, providing novel therapeutic targets for future clinical interventions. With the miRNA array performed and Real-time PCR validated, we revealed the crucial function of miR-330-5p transferred by SHED-derived EVs (SHED-EVs) in regulating microglia, the critical immune modulator in central nervous system. MiR-330-5p targeted Ehmt2 and mediated the transcription of CXCL14 to promote M2 microglia polarization and inhibit M1 polarization. Identified in our in vivo data, SHED-EVs and their effector miR-330-5p alleviated the secretion of inflammatory cytokines and resumed the motor functional recovery of TBI rats. In summary, by transferring miR-330-5p, SHED-EVs favored anti-inflammatory microglia polarization through Ehmt2 mediated CXCL14 transcription in treating traumatic brain injury.
Animals
;
Brain Injuries, Traumatic/therapy*
;
Chemokines, CXC/metabolism*
;
Extracellular Vesicles/metabolism*
;
Histocompatibility Antigens/metabolism*
;
Histone-Lysine N-Methyltransferase/metabolism*
;
Humans
;
MicroRNAs/metabolism*
;
Microglia/metabolism*
;
Rats
;
Stem Cells/metabolism*
8.Effect of miRNA-200b on the proliferation of liver cancer cells via targeting SMYD2/p53 signaling pathway.
Weijin FANG ; Liying SONG ; Zuojun LI ; Peipei MENG ; Shanru ZUO ; Shikun LIU
Journal of Central South University(Medical Sciences) 2022;47(10):1303-1314
OBJECTIVES:
Our previous study has verified that high level of SET and MYND domain-containing protein 2 (SMYD2) plays an important role in acquiring aggressive ability for liver cancer cells in hepatocellular carcinoma. MiR-200b as a tumor suppressor gene involves in a variety of cancers. This study aims to investigate the correlation between miR-200b and SMYD2 in hepatocellular carcinoma and the underlying mechanism.
METHODS:
Firstly, the levels of SMYD2 and miR-200b in hepatocellular carcinoma tissues and matched adjacent non-tumor liver tissues were tested with real-time reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting. Secondly, we evaluated the interaction between miR-200b and SMYD2 using dual-luciferase reporter assay. Thirdly, we elucidated the effect of miR-200b on SMYD2 and its downstream targets p53/CyclinE1. Finally, we silenced SMYD2 in hepatocellular carcinoma cell lines to investigate its effect on tumor proliferation and cell cycle progression, and further confirmed the correlation among SMYD2 and p53/CyclinE1.
RESULTS:
Compared with the matched adjacent non-tumor liver tissues, miR-200b was obviously decreased, and SMYD2 was significantly increased in hepatocellular carcinoma (both P<0.05). Spearman's rank correlation revealed that miR-200b expression was negatively correlated with SMYD2 (P<0.01). Computer algorithm and dual-luciferase reporter assay revealed that miR-200b directly targeted and suppressed SMYD2 in HEK 293T cells. The down-regulated miR-200b expression promoted hepatoma cell proliferation (P<0.05) and increased SMYD2 expression(P<0.01), while the up-regulated expression of miR-200b had an opposite effect. The knockdown of SMYD2 suppressed the proliferation of MHCC-97L cells (P<0.01), down-regulated CyclinE1, and up-regulated p53 expression (both P<0.05).
CONCLUSIONS
MiR-200b is involved in hepatocellular carcinoma progression via targeting SMYD2 and regulating SMYD2/p53/CyclinE1 signaling pathway and may be used as a potential target for hepatocellular carcinoma treatment.
Humans
;
Carcinoma, Hepatocellular/pathology*
;
Tumor Suppressor Protein p53/metabolism*
;
MicroRNAs/metabolism*
;
Cell Line, Tumor
;
Signal Transduction
;
Liver Neoplasms/pathology*
;
Cell Proliferation/genetics*
;
Histone-Lysine N-Methyltransferase/metabolism*
9.Increased lysine N-methylation of a 23-kDa protein during hepatic regeneration.
Yong Bock CHOI ; Myoung Hyun KO ; Chang Ho SHIN ; Kyung Suk KIM ; Kyeong Man HONG ; Moon Kee PAIK ; Dong Eun PARK
Experimental & Molecular Medicine 2005;37(3):155-160
The methylation of a 23-kDa nuclear protein increased after partial hepatectomy and methylation returned to basal levels after the initial stage of regeneration. The methylating enzyme was partially purified from rat liver by ammonium sulfate precipitation, DEAE-anion exchange chromatography and Butyl-Sepharose chromatography. The 23-kDa protein was purified from a nuclear fraction of liver tissue with SP-Sepharose. When the 23-kDa protein was methylated with the partially purified methyltransferase and analyzed on C18 high performance liquid chromatography (HPLC), the methylated acceptor amino acid was monomethyl lysine (MML). Previously, only arginine N-methylation of specific substrate proteins has been reported during liver regeneration. However, in this report, we found that lysine N-methylation increased during early hepatic regeneration, suggesting that lysine N-methylation of the 23-kDa nuclear protein may play a functional role in hepatic regeneration. The methyltransferase did not methylate other proteins such as histones, hnRNPA1, or cytochrome C, suggesting the enzyme is a 23-kDa nuclear protein- specific lysine N-methyltransferase.
Animals
;
Cytochromes c/metabolism
;
DNA Helicases/metabolism
;
Hepatectomy
;
Histone-Lysine N-Methyltransferase/*metabolism
;
Histones/metabolism
;
Liver
;
Liver Regeneration/*physiology
;
Lysine/*metabolism
;
Methylation
;
Proteins/*metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Research Support, Non-U.S. Gov't
10.MLL1/WDR5 complex in leukemogenesis and epigenetic regulation.
Chinese Journal of Cancer 2011;30(4):240-246
MLL1 is a histone H3Lys4 methyltransferase and forms a complex with WDR5 and other components. It plays important roles in developmental events, transcriptional regulation, and leukemogenesis. MLL1-fusion proteins resulting from chromosomal translocations are molecular hallmarks of a special type of leukemia, which occurs in over 70% infant leukemia patients and often accompanies poor prognosis. Investigations in the past years on leukemogenesis and the MLL1-WDR5 histone H3Lys4 methyltransferase complex demonstrate that epigenetic regulation is one of the key steps in development and human diseases.
Animals
;
DNA Methylation
;
Epigenesis, Genetic
;
Histone-Lysine N-Methyltransferase
;
genetics
;
metabolism
;
Histones
;
metabolism
;
Humans
;
Leukemia
;
genetics
;
metabolism
;
Lysine
;
metabolism
;
Multiprotein Complexes
;
genetics
;
metabolism
;
Myeloid-Lymphoid Leukemia Protein
;
genetics
;
metabolism
;
Transcriptional Activation