1.Molecular mechanisms of RPD3 family members in regulating plant development and environmental responses.
Qinlin DENG ; Huanhuan LU ; Mengdan WU ; Maolin RAN ; Zhimin WANG ; Dayong WEI ; Qinglin TANG
Chinese Journal of Biotechnology 2021;37(8):2645-2657
Lysine acetylation is one of the major post-translational modifications and plays critical roles in regulating gene expression and protein function. Histone deacetylases (HDACs) are responsible for the removal of acetyl groups from the lysines of both histone and non-histone proteins. The RPD3 family is the most widely studied HDACs. This article summarizes the regulatory mechanisms of Arabidopsis RPD3 family in several growth and development processes, which provide a reference for studying the mechanisms of RPD3 family members in regulating plant development. Moreover, this review may provide ideas and clues for exploring the functions of other members of HDACs family.
Arabidopsis/metabolism*
;
Histone Deacetylases/metabolism*
;
Histones
;
Plant Development/genetics*
2.Histone deacetylases and acute kidney injury.
Feng-Chen SHEN ; Shou-Gang ZHUANG
Acta Physiologica Sinica 2022;74(1):73-79
Histone acetylation is one of the epigenetic modifications. Histone acetylation, which is catalyzed by histone acetyltransferases and negatively regulated by histone deacetylases, plays an important role in a variety of cellular physiological and pathophysiological processes. Recent studies have shown that histone deacetylases are involved in a variety of pathophysiological responses to acute kidney injury, such as apoptosis, dedifferentiation, proliferation and regeneration. This article reviews the role and underlying mechanism of histone deacetylases in acute kidney injury induced by ischemia reperfusion, nephrotoxicants, sepsis and rhabdomyolysis.
Acetylation
;
Acute Kidney Injury
;
Histone Acetyltransferases/metabolism*
;
Histone Deacetylases/metabolism*
;
Humans
;
Protein Processing, Post-Translational
4.The role of histone deacetylases 1/2 in regulating murine oogenesis.
Acta Physiologica Sinica 2021;73(3):527-534
Oogenesis is the basic reproductive process of female mammals and is essential for fertilization and embryo development. Recent studies have shown that epigenetic modifications play an important role in the regulation of mammalian reproductive processes (such as oogenesis, spermatogenesis, preimplantation embryo development and sex differentiation). Taking histone acetylation as an instance, the dynamic changes of histone acetyltransferases (HATs) and deacetylases (HDACs) are involved in the regulation of gene activation and inactivation when numerous key physiological events occur during reproduction. Thereinto, HDAC1 and HDAC2, which are highly homologous in terms of both structure and function, play a pivotal role in murine oogenesis. HDAC1 and 2 jointly regulate the global transcription and the incidence of apoptosis of growing oocytes and affect its subsequent growth and development, which reflects their compensatory function. In addition, HDAC1 and 2 also play a specific part in oogenesis respectively. It has shown that HDAC2 is more critical than HDAC1 for oocyte development, which regulates de novo DNA methylation and chromosome segregation. Reciprocally, HDAC1 is more critical than HDAC2 for preimplantation development. Deficiency of HDAC1 causes the decreased proliferation of embryonic stem cells and the smaller embryoid bodies with irregular shape. In this review, we summarized the role and the current research progress of HDAC1/2 in murine oogenesis, to provide a reference for further understanding the relationship between epigenetic modifications and reproductive regulation.
Acetylation
;
Animals
;
Embryonic Development
;
Female
;
Histone Deacetylase 1/metabolism*
;
Histone Deacetylase 2/metabolism*
;
Histone Deacetylases/metabolism*
;
Male
;
Mice
;
Oocytes
;
Oogenesis
5.Role and mechanism of histone deacetylases in mouse neuronal development.
Yu-Wei BAI ; Meng-Long GUAN ; Tao ZHENG ; Shi-Ping LI ; Yi QU ; De-Zhi MU
Chinese Journal of Contemporary Pediatrics 2021;23(3):294-299
OBJECTIVE:
To study the role and mechanism of histone deacetylase 1 (HDAC1) and histone deacetylase 2 (HDAC2) in mouse neuronal development.
METHODS:
The mice with Synapsin1-Cre recombinase were bred with
RESULTS:
The mice with
CONCLUSIONS
Deletion of
Animals
;
Blotting, Western
;
Histone Deacetylase 1/genetics*
;
Histone Deacetylase 2
;
Histone Deacetylases/genetics*
;
Immunohistochemistry
;
Mice
;
Neurons/metabolism*
;
Signal Transduction
6.Harnessing the HDAC-histone deacetylase enzymes, inhibitors and how these can be utilised in tissue engineering.
International Journal of Oral Science 2019;11(2):20-20
There are large knowledge gaps regarding how to control stem cells growth and differentiation. The limitations of currently available technologies, such as growth factors and/or gene therapies has led to the search of alternatives. We explore here how a cell's epigenome influences determination of cell type, and potential applications in tissue engineering. A prevalent epigenetic modification is the acetylation of DNA core histone proteins. Acetylation levels heavily influence gene transcription. Histone deacetylase (HDAC) enzymes can remove these acetyl groups, leading to the formation of a condensed and more transcriptionally silenced chromatin. Histone deacetylase inhibitors (HDACis) can inhibit these enzymes, resulting in the increased acetylation of histones, thereby affecting gene expression. There is strong evidence to suggest that HDACis can be utilised in stem cell therapies and tissue engineering, potentially providing novel tools to control stem cell fate. This review introduces the structure/function of HDAC enzymes and their links to different tissue types (specifically bone, cardiac, neural tissues), including the history, current status and future perspectives of using HDACis for stem cell research and tissue engineering, with particular attention paid to how different HDAC isoforms may be integral to this field.
Acetylation
;
drug effects
;
Histone Deacetylase Inhibitors
;
pharmacology
;
Histone Deacetylases
;
metabolism
;
Histones
;
isolation & purification
;
metabolism
;
Humans
;
Tissue Engineering
7.Histone deacetylase inhibitors as therapeutic agents for polyglutamine disorders.
Hong JIANG ; Dandan JIA ; Beisha TANG
Chinese Journal of Medical Genetics 2010;27(1):52-55
During the past few years, gene expression studies have shown that the perturbation of transcription frequently results in neuronal dysfunction in polyglutamine (PolyQ) diseases such as Huntington's disease (HD). Histone deacetylases (HDACs) act as repressors of transcription through interaction with co-repressor complexes, leading to chromatin remodelling. Aberrant interaction between PolyQ proteins and regulators of transcription could be one mechanism by which transcriptional dysregulation occurs. Here, the authors discuss the possible mechanism of transcriptional dysfunction in PolyQ disease, including the effect of histone acetyltransferases (HATs) and HDACs on pathogenesis, and the potential therapeutic pathways through which histone deacetylase inhibitors (HDACIs) might act to correct the aberrant transcription observed in HD and other PolyQ diseases.
Animals
;
Histone Acetyltransferases
;
genetics
;
metabolism
;
Histone Deacetylase Inhibitors
;
therapeutic use
;
Histone Deacetylases
;
genetics
;
metabolism
;
Humans
;
Huntington Disease
;
drug therapy
;
enzymology
;
metabolism
;
Peptides
;
metabolism
8.Histone modification and its application in therapy for hematologic malignancies -- review.
Journal of Experimental Hematology 2009;17(3):816-820
Histone modification is an important mechanism in oncogenesis and development of hematologic malignancies. Acetylation of lysine residues on histones and opening chromatin are correlated with activation of genes, whereas lysine residues methylation can result in either activation or repression on expressions of chromatin. The main point of all is deacetylation of histone mediated by histone deacetylases (HDACs). HDAC inhibitors are divided into 4 categories: short-chain fatty acids, hydroxamic acids, cyclic tetrapeptides and benzamides, owning different mechanisms in HDAC inhibition. Many kinds of I/II phase clinical tests showed that all these HDAC inhibitors have obviously therapeutic efficacies in treatment of hematologic malignancies with low poisons. Combination of HDAC inhibitors with DNA demethylation drugs can decrease DNA methylation, increase histone acetylation and recover antioncogene expression. As important parts of epigenetics, histone acetylation and HDAC inhibitors possess positive prospects in treatment of hematologic malignancies. In this review the advances of study on mechanisms of histone modification, HDAC inhibitors and their use in treatment of hematologic malignancies are summarized.
Acetylation
;
Hematologic Neoplasms
;
drug therapy
;
Histone Deacetylase Inhibitors
;
therapeutic use
;
Histone Deacetylases
;
genetics
;
Histones
;
chemistry
;
genetics
;
metabolism
9.Effect of Histone Deacetylase Inhibition on the Expression of Multidrug Resistance-associated Protein 2 in a Human Placental Trophoblast Cell Line.
Hong-Yu DUAN ; Dan MA ; Kai-Yu ZHOU ; ; Tao WANG ; Yi ZHANG ; ; Yi-Fei LI ; Jin-Lin WU ; Yi-Min HUA ; ; Chuan WANG ;
Chinese Medical Journal 2017;130(11):1352-1360
BACKGROUNDPlacental multidrug resistance-associated protein 2 (MRP2), encoded by ABCC2 gene in human, plays a significant role in regulating drugs' transplacental transfer rates. Studies on placental MRP2 regulation could provide more therapeutic targets for individualized and safe pharmacotherapy during pregnancy. Currently, the roles of epigenetic mechanisms in regulating placental drug transporters are still unclear. This study aimed to investigate the effect of histone deacetylases (HDACs) inhibition on MRP2 expression in the placental trophoblast cell line and to explore whether HDAC1/2/3 are preliminarily involved in this process.
METHODSThe human choriocarcinoma-derived trophoblast cell line (Bewo cells) was treated with the HDAC inhibitors-trichostatin A (TSA) at different concentration gradients of 0.5, 1.0, 3.0, and 5.0 μmol/L. Cells were harvested after 24 and 48 h treatment. Small interfering RNA (siRNA) specific for HDAC1/HDAC2/HDAC3 or control siRNA was transfected into cells. Total HDAC activity was detected by colorimetric assay kits. HDAC1/2/3/ABCC2 messenger RNA (mRNA) and protein expressions were determined by real-time quantitative polymerase chain reaction and Western-blot analysis, respectively. Immunofluorescence for MRP2 protein expression was visualized and assessed using an immunofluorescence microscopy and ImageJ software, respectively.
RESULTSTSA could inhibit total HDAC activity and HDAC1/2/3 expression in company with increase of MRP2 expression in Bewo cells. Reduction of HDAC1 protein level was noted after 24 h of TSA incubation at 1.0, 3.0, and 5.0 μmol/L (vs. vehicle group, all P < 0.001), accompanied with dose-dependent induction of MRP2 expression (P = 0.045 for 1.0 μmol/L, P = 0.001 for 3.0 μmol/L, and P < 0.001 for 5.0 μmol/L), whereas no significant differences in MRP2 expression were noted after HDAC2/3 silencing. Fluorescent micrograph images of MRP2 protein were expressed on the cell membrane. The fluorescent intensities of MRP2 in the control, HDAC2, and HDAC3 siRNA-transfected cells were week, and no significant differences were noticed among these three groups (all P > 0.05). However, MRP2 expression was remarkably elevated in HDAC1 siRNA-transfected cells, which displayed an almost 3.19-fold changes in comparison with the control siRNA-transfected cells (P < 0.001).
CONCLUSIONSHDACs inhibition could up-regulate placental MRP2 expression in vitro, and HDAC1 was probably to be involved in this process.
Cell Line ; Histone Deacetylase 1 ; metabolism ; Histone Deacetylase 2 ; metabolism ; Histone Deacetylase Inhibitors ; pharmacology ; Histone Deacetylases ; metabolism ; Humans ; Hydroxamic Acids ; pharmacology ; Microscopy, Fluorescence ; Multidrug Resistance-Associated Proteins ; genetics ; metabolism ; RNA, Messenger ; Trophoblasts ; cytology ; metabolism
10.Nicotine inhibits histone deacetylase 6 activity and chaperone-dependent activation of the glucocorticoid receptor in A549 cells.
Li-chao SUN ; Jiang-tao LIN ; Wen LI ; Lan ZHANG ; Tong-liang ZHOU ; Xiao-yan ZHANG
Chinese Medical Journal 2012;125(4):662-666
BACKGROUNDNicotine, a major component of tobacco, is the main cause of smoking addiction. It was found that asthmatic patients who smoke were insensitive to glucocorticoid treatment. In this paper, we investigated whether nicotine could inhibit histone deacetylase 6 activity (HDAC6) and chaperone-dependent activation of the glucocorticoid receptor (GR) in A549 cells. Furthermore, the expression level of heat shock protein 90 (HSP90) was determined.
METHODSQuantitative real-time polymerase chain reaction was used to detect the levels of RNA transcription, and Western blotting was applied to analyze the levels of protein expression of HDAC6, GR, and HSP90 in A549 cells. Moreover, the effects of dexamethasone and trichostatin A were observed in A549 cells.
RESULTSA549 cell proliferation was inhibited in the presence of nicotine, and the level of RNA and protein expression of HDAC6 and GR were down-regulated.
CONCLUSIONSNicotine could inhibit HDAC6 activity and chaperone-dependent activation of GR. This might be the main reason why asthmatic patients who smoke show insensitivity to the glucocorticoid treatment.
Cell Line, Tumor ; Cell Proliferation ; drug effects ; Enzyme Activation ; drug effects ; Histone Deacetylase 6 ; Histone Deacetylases ; genetics ; metabolism ; Humans ; Nicotine ; pharmacology ; Receptors, Glucocorticoid ; genetics ; metabolism