1.Planning evaluation of stereotactic magnetic resonance–guided online adaptive radiosurgery for kidney tumors close to the organ at risk: is it valuable to wait for good timing to perform stereotactic radiosurgery?
Takaya YAMAMOTO ; Shohei TANAKA ; Noriyoshi TAKAHASHI ; Rei UMEZAWA ; Yu SUZUKI ; Keita KISHIDA ; So OMATA ; Kazuya TAKEDA ; Hinako HARADA ; Kiyokazu SATO ; Yoshiyuki KATSUTA ; Noriyuki KADOYA ; Keiichi JINGU
Radiation Oncology Journal 2025;43(1):40-48
Purpose:
This study aimed to investigate changes in target coverage using magnetic resonance–guided online adaptive radiotherapy (MRgoART) for kidney tumors and to evaluate the suitable timing of treatment.
Materials and Methods:
Among patients treated with 3-fraction MRgoART for kidney cancer, 18 tumors located within 1 cm of the gastrointestinal tract were selected. Stereotactic radiosurgery planning with a prescription dose of 26 Gy was performed using pretreatment simulation and three MRgoART timings with an adapt-to-shape method. The best MRgoART plan was defined as the plan achieving the highest percentage of planning target volume (PTV) coverage of 26 Gy. In clinical scenario simulation, MRgoART plans were evaluated in the order of actual treatment. Waiting for the next timing was done when the PTV coverage of 26 Gy did not achieve 95%–99% or did not increase by 5% or more compared to the pretreatment plan.
Results:
The median percentages of PTV receiving 26 Gy in pretreatment and the first, second, and third MRgoART were 82% (range, 19%), 63% (range, 7% to 99%), 88% (range, 31% to 99%), and 95% (range, 3% to 99%), respectively. Comparing pretreatment simulation plans with the best MRgoART plans showed a significant difference (p = 0.025). In the clinical scenario simulation, 16 of the 18 planning series, including nine plans with 95%–99% PTV coverage of 26 Gy and seven plans with increased PTV coverage by 5% or more, would be irradiated at a good timing.
Conclusion
MRgoART revealed dose coverage differences at each MRgoART timing. Waiting for optimal irradiation timing could be an option in case of suboptimal timing.
2.Planning evaluation of stereotactic magnetic resonance–guided online adaptive radiosurgery for kidney tumors close to the organ at risk: is it valuable to wait for good timing to perform stereotactic radiosurgery?
Takaya YAMAMOTO ; Shohei TANAKA ; Noriyoshi TAKAHASHI ; Rei UMEZAWA ; Yu SUZUKI ; Keita KISHIDA ; So OMATA ; Kazuya TAKEDA ; Hinako HARADA ; Kiyokazu SATO ; Yoshiyuki KATSUTA ; Noriyuki KADOYA ; Keiichi JINGU
Radiation Oncology Journal 2025;43(1):40-48
Purpose:
This study aimed to investigate changes in target coverage using magnetic resonance–guided online adaptive radiotherapy (MRgoART) for kidney tumors and to evaluate the suitable timing of treatment.
Materials and Methods:
Among patients treated with 3-fraction MRgoART for kidney cancer, 18 tumors located within 1 cm of the gastrointestinal tract were selected. Stereotactic radiosurgery planning with a prescription dose of 26 Gy was performed using pretreatment simulation and three MRgoART timings with an adapt-to-shape method. The best MRgoART plan was defined as the plan achieving the highest percentage of planning target volume (PTV) coverage of 26 Gy. In clinical scenario simulation, MRgoART plans were evaluated in the order of actual treatment. Waiting for the next timing was done when the PTV coverage of 26 Gy did not achieve 95%–99% or did not increase by 5% or more compared to the pretreatment plan.
Results:
The median percentages of PTV receiving 26 Gy in pretreatment and the first, second, and third MRgoART were 82% (range, 19%), 63% (range, 7% to 99%), 88% (range, 31% to 99%), and 95% (range, 3% to 99%), respectively. Comparing pretreatment simulation plans with the best MRgoART plans showed a significant difference (p = 0.025). In the clinical scenario simulation, 16 of the 18 planning series, including nine plans with 95%–99% PTV coverage of 26 Gy and seven plans with increased PTV coverage by 5% or more, would be irradiated at a good timing.
Conclusion
MRgoART revealed dose coverage differences at each MRgoART timing. Waiting for optimal irradiation timing could be an option in case of suboptimal timing.
3.Planning evaluation of stereotactic magnetic resonance–guided online adaptive radiosurgery for kidney tumors close to the organ at risk: is it valuable to wait for good timing to perform stereotactic radiosurgery?
Takaya YAMAMOTO ; Shohei TANAKA ; Noriyoshi TAKAHASHI ; Rei UMEZAWA ; Yu SUZUKI ; Keita KISHIDA ; So OMATA ; Kazuya TAKEDA ; Hinako HARADA ; Kiyokazu SATO ; Yoshiyuki KATSUTA ; Noriyuki KADOYA ; Keiichi JINGU
Radiation Oncology Journal 2025;43(1):40-48
Purpose:
This study aimed to investigate changes in target coverage using magnetic resonance–guided online adaptive radiotherapy (MRgoART) for kidney tumors and to evaluate the suitable timing of treatment.
Materials and Methods:
Among patients treated with 3-fraction MRgoART for kidney cancer, 18 tumors located within 1 cm of the gastrointestinal tract were selected. Stereotactic radiosurgery planning with a prescription dose of 26 Gy was performed using pretreatment simulation and three MRgoART timings with an adapt-to-shape method. The best MRgoART plan was defined as the plan achieving the highest percentage of planning target volume (PTV) coverage of 26 Gy. In clinical scenario simulation, MRgoART plans were evaluated in the order of actual treatment. Waiting for the next timing was done when the PTV coverage of 26 Gy did not achieve 95%–99% or did not increase by 5% or more compared to the pretreatment plan.
Results:
The median percentages of PTV receiving 26 Gy in pretreatment and the first, second, and third MRgoART were 82% (range, 19%), 63% (range, 7% to 99%), 88% (range, 31% to 99%), and 95% (range, 3% to 99%), respectively. Comparing pretreatment simulation plans with the best MRgoART plans showed a significant difference (p = 0.025). In the clinical scenario simulation, 16 of the 18 planning series, including nine plans with 95%–99% PTV coverage of 26 Gy and seven plans with increased PTV coverage by 5% or more, would be irradiated at a good timing.
Conclusion
MRgoART revealed dose coverage differences at each MRgoART timing. Waiting for optimal irradiation timing could be an option in case of suboptimal timing.
4.Planning evaluation of stereotactic magnetic resonance–guided online adaptive radiosurgery for kidney tumors close to the organ at risk: is it valuable to wait for good timing to perform stereotactic radiosurgery?
Takaya YAMAMOTO ; Shohei TANAKA ; Noriyoshi TAKAHASHI ; Rei UMEZAWA ; Yu SUZUKI ; Keita KISHIDA ; So OMATA ; Kazuya TAKEDA ; Hinako HARADA ; Kiyokazu SATO ; Yoshiyuki KATSUTA ; Noriyuki KADOYA ; Keiichi JINGU
Radiation Oncology Journal 2025;43(1):40-48
Purpose:
This study aimed to investigate changes in target coverage using magnetic resonance–guided online adaptive radiotherapy (MRgoART) for kidney tumors and to evaluate the suitable timing of treatment.
Materials and Methods:
Among patients treated with 3-fraction MRgoART for kidney cancer, 18 tumors located within 1 cm of the gastrointestinal tract were selected. Stereotactic radiosurgery planning with a prescription dose of 26 Gy was performed using pretreatment simulation and three MRgoART timings with an adapt-to-shape method. The best MRgoART plan was defined as the plan achieving the highest percentage of planning target volume (PTV) coverage of 26 Gy. In clinical scenario simulation, MRgoART plans were evaluated in the order of actual treatment. Waiting for the next timing was done when the PTV coverage of 26 Gy did not achieve 95%–99% or did not increase by 5% or more compared to the pretreatment plan.
Results:
The median percentages of PTV receiving 26 Gy in pretreatment and the first, second, and third MRgoART were 82% (range, 19%), 63% (range, 7% to 99%), 88% (range, 31% to 99%), and 95% (range, 3% to 99%), respectively. Comparing pretreatment simulation plans with the best MRgoART plans showed a significant difference (p = 0.025). In the clinical scenario simulation, 16 of the 18 planning series, including nine plans with 95%–99% PTV coverage of 26 Gy and seven plans with increased PTV coverage by 5% or more, would be irradiated at a good timing.
Conclusion
MRgoART revealed dose coverage differences at each MRgoART timing. Waiting for optimal irradiation timing could be an option in case of suboptimal timing.
5.Planning evaluation of stereotactic magnetic resonance–guided online adaptive radiosurgery for kidney tumors close to the organ at risk: is it valuable to wait for good timing to perform stereotactic radiosurgery?
Takaya YAMAMOTO ; Shohei TANAKA ; Noriyoshi TAKAHASHI ; Rei UMEZAWA ; Yu SUZUKI ; Keita KISHIDA ; So OMATA ; Kazuya TAKEDA ; Hinako HARADA ; Kiyokazu SATO ; Yoshiyuki KATSUTA ; Noriyuki KADOYA ; Keiichi JINGU
Radiation Oncology Journal 2025;43(1):40-48
Purpose:
This study aimed to investigate changes in target coverage using magnetic resonance–guided online adaptive radiotherapy (MRgoART) for kidney tumors and to evaluate the suitable timing of treatment.
Materials and Methods:
Among patients treated with 3-fraction MRgoART for kidney cancer, 18 tumors located within 1 cm of the gastrointestinal tract were selected. Stereotactic radiosurgery planning with a prescription dose of 26 Gy was performed using pretreatment simulation and three MRgoART timings with an adapt-to-shape method. The best MRgoART plan was defined as the plan achieving the highest percentage of planning target volume (PTV) coverage of 26 Gy. In clinical scenario simulation, MRgoART plans were evaluated in the order of actual treatment. Waiting for the next timing was done when the PTV coverage of 26 Gy did not achieve 95%–99% or did not increase by 5% or more compared to the pretreatment plan.
Results:
The median percentages of PTV receiving 26 Gy in pretreatment and the first, second, and third MRgoART were 82% (range, 19%), 63% (range, 7% to 99%), 88% (range, 31% to 99%), and 95% (range, 3% to 99%), respectively. Comparing pretreatment simulation plans with the best MRgoART plans showed a significant difference (p = 0.025). In the clinical scenario simulation, 16 of the 18 planning series, including nine plans with 95%–99% PTV coverage of 26 Gy and seven plans with increased PTV coverage by 5% or more, would be irradiated at a good timing.
Conclusion
MRgoART revealed dose coverage differences at each MRgoART timing. Waiting for optimal irradiation timing could be an option in case of suboptimal timing.
6.Reproducibility and validity of food group intake in a short food frequency questionnaire for the middle-aged Japanese population.
Nahomi IMAEDA ; Chiho GOTO ; Tae SASAKABE ; Haruo MIKAMI ; Isao OZE ; Akihiro HOSONO ; Mariko NAITO ; Naoko MIYAGAWA ; Etsuko OZAKI ; Hiroaki IKEZAKI ; Hinako NANRI ; Noriko T NAKAHATA ; Sakurako K KAMANO ; Kiyonori KURIKI ; Yuri T YAGUCHI ; Takamasa KAYAMA ; Ayako KURIHARA ; Sei HARADA ; Kenji WAKAI
Environmental Health and Preventive Medicine 2021;26(1):28-28
PURPOSE:
The purpose of this study was to evaluate the reproducibility and validity of a short food frequency questionnaire (FFQ) for food group intake in Japan, the reproducibility and partial validity of which were previously confirmed for nutrients.
METHODS:
A total of 288 middle-aged healthy volunteers from 11 different areas of Japan provided nonconsecutive 3-day weighed dietary records (DRs) at 3-month intervals over four seasons. We evaluated reproducibility based on the first (FFQ1) and second (FFQ2) questionnaires and their validity against the DRs by comparing the intake of 20 food groups. Spearman's rank correlation coefficients (SRs) were calculated between energy-adjusted intake from the FFQs and that from the DRs.
RESULTS:
The intake of 20 food groups estimated from the two FFQs was mostly equivalent. The median energy-adjusted SRs between the FFQ1 and FFQ2 were 0.61 (range 0.38-0.86) for men and 0.66 (0.45-0.84) for women. For validity, the median de-attenuated SRs between DRs and the FFQ1 were 0.51 (0.17-0.76) for men and 0.47 (0.23-0.77) for women. Compared with the DRs, the proportion of cross-classification into exact plus adjacent quintiles with the FFQ1 ranged from 58 to 86% in men and from 57 to 86% in women. According to the robust Z scores and the Bland-Altman plot graphs, the underestimation errors in the FFQ1 tended to be greater in individuals with high mean levels of consumption for meat for men and for other vegetables for both men and women.
CONCLUSION
The FFQ demonstrated high reproducibility and reasonable validity for food group intake. This questionnaire is short and remains appropriate for identifying associations between diet and health/disease among adults in Japan.
Adult
;
Aged
;
Diet/statistics & numerical data*
;
Diet Surveys
;
Energy Intake
;
Female
;
Food/statistics & numerical data*
;
Healthy Volunteers
;
Humans
;
Japan
;
Male
;
Middle Aged
;
Reproducibility of Results