1.Molecular mechanisms involved in human platelet aggregation by synergistic interaction of platelet-activating factor and 5-hydroxytryptamine..
Bukhtiar H SHAH ; Huma RASHEED ; Ibrahim H RAHMAN ; Amir H SHARIFF ; Fatima L KHAN ; Hina B RAHMAN ; Sara HANIF ; Sheikh A SAEED
Experimental & Molecular Medicine 2001;33(4):226-233
Our recent studies have shown that co-activation of Gq and Gi proteins by 5-hydroxytryptamine (5-HT) and adrenaline show synergism in human platelet aggregation. This study was conducted to examine the mechanism(s) of synergistic interaction of 5-HT and platelet activating factor (PAF) in human platelets. We show that PAF, but not 5-HT, increased platelet aggregation in a concentration-dependent manner. However, low concentrations of 5-HT (2 microM) potentiated platelet aggregation induced by subthreshold concentration of PAF (40 nM) indicating a synergistic interaction between the two agonists and this synergism was blocked by receptor antagonists to either 5-HT or PAF. 5-HT also potentiated the effect of PAF on thromboxane A2 (TXA2) formation and phosphorylation of extracellularly regulated mitogen-activated protein kinases (ERK1/2). The synergism of 5-HT and PAF in platelet aggregation was inhibited by calcium (Ca2+) channel blockers, verapamil and diltiazem, phospholipase C (PLC) inhibitor, U73122, cyclooxygenase (COX) inhibitor, indomethacin, and MEK inhibitor, PD98059. These data suggest that synergistic effect of 5-HT and PAF on human platelet aggregation involves activation of PLC/Ca2+, COX and MAP kinase pathways.
Diltiazem/pharmacology
;
Dose-Response Relationship, Drug
;
Drug Synergism
;
Estrenes/pharmacology
;
Flavones/pharmacology
;
Human
;
In Vitro
;
Indomethacin/pharmacology
;
Kinetics
;
Mitogen-Activated Protein Kinases/metabolism
;
Phosphorylation/drug effects
;
Platelet Activating Factor/*pharmacology
;
Platelet Activation/drug effects
;
Platelet Aggregation/*drug effects/physiology
;
Pyrrolidinones/pharmacology
;
Serotonin/*pharmacology
;
Thromboxane A2/biosynthesis
;
Verapamil/pharmacology
2.Molecular mechanisms involved in human platelet aggregation by synergistic interaction of platelet-activating factor and 5-hydroxytryptamine..
Bukhtiar H SHAH ; Huma RASHEED ; Ibrahim H RAHMAN ; Amir H SHARIFF ; Fatima L KHAN ; Hina B RAHMAN ; Sara HANIF ; Sheikh A SAEED
Experimental & Molecular Medicine 2001;33(4):226-233
Our recent studies have shown that co-activation of Gq and Gi proteins by 5-hydroxytryptamine (5-HT) and adrenaline show synergism in human platelet aggregation. This study was conducted to examine the mechanism(s) of synergistic interaction of 5-HT and platelet activating factor (PAF) in human platelets. We show that PAF, but not 5-HT, increased platelet aggregation in a concentration-dependent manner. However, low concentrations of 5-HT (2 microM) potentiated platelet aggregation induced by subthreshold concentration of PAF (40 nM) indicating a synergistic interaction between the two agonists and this synergism was blocked by receptor antagonists to either 5-HT or PAF. 5-HT also potentiated the effect of PAF on thromboxane A2 (TXA2) formation and phosphorylation of extracellularly regulated mitogen-activated protein kinases (ERK1/2). The synergism of 5-HT and PAF in platelet aggregation was inhibited by calcium (Ca2+) channel blockers, verapamil and diltiazem, phospholipase C (PLC) inhibitor, U73122, cyclooxygenase (COX) inhibitor, indomethacin, and MEK inhibitor, PD98059. These data suggest that synergistic effect of 5-HT and PAF on human platelet aggregation involves activation of PLC/Ca2+, COX and MAP kinase pathways.
Diltiazem/pharmacology
;
Dose-Response Relationship, Drug
;
Drug Synergism
;
Estrenes/pharmacology
;
Flavones/pharmacology
;
Human
;
In Vitro
;
Indomethacin/pharmacology
;
Kinetics
;
Mitogen-Activated Protein Kinases/metabolism
;
Phosphorylation/drug effects
;
Platelet Activating Factor/*pharmacology
;
Platelet Activation/drug effects
;
Platelet Aggregation/*drug effects/physiology
;
Pyrrolidinones/pharmacology
;
Serotonin/*pharmacology
;
Thromboxane A2/biosynthesis
;
Verapamil/pharmacology