1.Rhodiolae Crenulatae Radix et Rhizoma protects brain microvascular endothelial cells from ischemia and hypoxia injury by regulating PI3K/AKT/GSK3β pathway.
Li TANG ; Qiu-Yue YANG ; Hong-Fa CHENG ; Ya-Hui XIE ; Qiu-Xia ZHANG
China Journal of Chinese Materia Medica 2025;50(11):3127-3136
This study elucidates the mechanism of Rhodiolae Crenulatae Radix et Rhizoma(RCRR) in protecting brain microvascular endothelial cells from oxygen-glucose deprivation(OGD) injury and reveals the modern pharmacological mechanism of RCRR's traditional use in nourishing Qi and promoting blood circulation to protect endothelial cells. The scratch assay was employed to assess the migratory capacity of endothelial cells. Immunofluorescence and Western blot techniques were employed to assess the protein expression of tight junction proteins zonula occludens-1(ZO-1), occludin, claudin-5, and proteins of the phosphoinositide 3-kinase(PI3K)/protein kinase B(AKT)/glycogen synthase kinase-3beta(GSK3β) pathway. The results demonstrated that 63 bioactive components and 125 potential core targets of RCRR were identified from the ETCM, TCMBank, and SwissTargetPrediction databases, as well as from the literature. A total of 1 708 brain microvascular endothelial cell-related targets were identified from the GeneCards and OMIM databases, and 52 targets were obtained by intersecting drug components with cell targets. The protein-protein interaction(PPI) network analysis revealed that AKT1, epidermal growth factor receptor(EGFR), matrix metalloproteinase 9(MMP9), estrogen receptor 1(ESR1), proto-oncogene tyrosine-protein kinase(SRC), peroxisome proliferator-activated receptor gamma(PPARG), GSK3β, and matrix metalloproteinase 2(MMP2) were considered hub genes. The KEGG enrichment analysis identified the PI3K/AKT pathway as the primary signaling pathway. Cell experiments demonstrated that RCRR-containing serum could enhance the migratory capacity of brain microvascular endothelial cells and the expression of tight junction proteins following OGD injury, which may be associated with the downregulation of the PI3K/AKT/GSK3β pathway. This study elucidates the pharmacological mechanism of RCRR in protecting brain microvascular endothelial cells through network pharmacology, characterized by multiple components and targets. These findings were validated through in vitro experiments and provide important ideas and references for further research into the molecular mechanisms of RCRR in protecting brain microvascular endothelial cells.
Endothelial Cells/cytology*
;
Glycogen Synthase Kinase 3 beta/genetics*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Drugs, Chinese Herbal/pharmacology*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Signal Transduction/drug effects*
;
Brain/metabolism*
;
Humans
;
Animals
;
Rhizome/chemistry*
;
Microvessels/metabolism*
;
Brain Ischemia/drug therapy*
2.In-depth identification of para-Bombay blood type in cancer patients using third-generation sequencing technology.
Na WANG ; Xiurong YU ; Yujuan CHEN
Chinese Journal of Cellular and Molecular Immunology 2025;41(2):148-153
Objective To precisely identify the para-Bombay blood types in cancer patients at our hospital, establish a robust system for the identification of challenging blood types in our laboratory, and provide a foundation for precise transfusion practices. Methods We retrospectively analyzed the blood type results of 91 874 cancer patients from January 1, 2019, to December 31, 2023. Conventional serological methods were used to screen for blood types, and suspected para-Bombay blood types were identified. Further analysis was performed using Pacific Biosciences (PacBio) single-molecule real-time sequencing and Sanger sequencing was used to determine the genotypes of the ABO, FUT1, and FUT2 genes. Results Eight cases of para-Bombay blood type were confirmed through serological and molecular biological methods. The FUT1 genotypes identified were: 5 cases of h1h1 (homozygous mutation 551_552delAG) and 3 cases of h1h2 (compound heterozygous mutations of 551_552delAG and 880_882delTT). The FUT2 genotypes identified were: 2 cases of Se357/Se357, 716 and 4 cases of Se357/Se357. Additionally, one sample revealed a novel heterozygous mutation, 818C>T, in exon 7 of the ABO gene, which was confirmed by PacBio sequencing to be located on the O haplotype. Conclusion PacBio sequencing technology demonstrates significant advantages in analyzing the haplotypes of para-Bombay blood type genes. This approach supports the establishment of a robust system for the identification of challenging blood types and provides novel evidence for precise transfusion practices in cancer patients.
Humans
;
Neoplasms/genetics*
;
Fucosyltransferases/genetics*
;
ABO Blood-Group System/genetics*
;
Male
;
High-Throughput Nucleotide Sequencing/methods*
;
Galactoside 2-alpha-L-fucosyltransferase
;
Female
;
Retrospective Studies
;
Genotype
;
Middle Aged
;
Blood Grouping and Crossmatching/methods*
;
Adult
;
Mutation
;
Aged
3.Triple-Target Inhibition of Cholinesterase, Amyloid Aggregation, and GSK3β to Ameliorate Cognitive Deficits and Neuropathology in the Triple-Transgenic Mouse Model of Alzheimer's Disease.
Junqiu HE ; Shan SUN ; Hongfeng WANG ; Zheng YING ; Kin Yip TAM
Neuroscience Bulletin 2025;41(5):821-836
Alzheimer's disease (AD) poses one of the most urgent medical challenges in the 21st century as it affects millions of people. Unfortunately, the etiopathogenesis of AD is not yet fully understood and the current pharmacotherapy options are somewhat limited. Here, we report a novel inhibitor, Compound 44, for targeting cholinesterases, amyloid-β (Aβ) aggregation, and glycogen synthase kinase 3β (GSK-3β) simultaneously with the aim of achieving symptomatic relief and disease modification in AD therapy. We found that Compound 44 had good inhibitory effects on all intended targets with IC50s of submicromolar or better, significant neuroprotective effects in cell models, and beneficial improvement of cognitive deficits in the triple transgenic AD (3 × Tg AD) mouse model. Moreover, we showed that Compound 44 acts as an autophagy regulator by inducing nuclear translocation of transcription factor EB through GSK-3β inhibition, enhancing the biogenesis of lysosomes and elevating autophagic flux, thus ameliorating the amyloid burden and tauopathy, as well as mitigating the disease phenotype. Our results suggest that triple-target inhibition via Compound 44 could be a promising strategy that may lead to the development of effective therapeutic approaches for AD.
Animals
;
Alzheimer Disease/genetics*
;
Mice, Transgenic
;
Glycogen Synthase Kinase 3 beta/metabolism*
;
Disease Models, Animal
;
Mice
;
Amyloid beta-Peptides/metabolism*
;
Cholinesterase Inhibitors/therapeutic use*
;
Humans
;
Autophagy/drug effects*
;
Cognitive Dysfunction/pathology*
;
Neuroprotective Agents/pharmacology*
4.Crigler-Najjar syndrome type 2 complicating cholecystitis in a patient with UGT1A1 gene double homozygous mutations.
Jianhui ZHANG ; Rongrong CHEN ; Xiang CHEN ; Ying CHEN ; Qilin CHEN ; Shiyun LU ; Jiewei LUO ; Xiaoling ZHENG ; Mengshi CHEN
Frontiers of Medicine 2025;19(4):675-680
Crigler-Najjar syndrome (CNS) and Gilbert syndrome (GS; OMIM: 143500) are rare autosomal recessive diseases that cause unconjugated hyperbilirubinemia due to decreased UGT1A1 enzyme activity. Crigler-Najjar syndrome type 2 (CNS2; OMIM: 606785) increases the risk of gallbladder stone formation and cholecystitis, while GS seldom causes health issues. We found a 28-year-old male patient with recurring right upper abdomen pain who experienced persistent jaundice from birth. CNS2 with gallbladder stones and cholecystitis was diagnosed after genetic testing revealed rare double homozygous mutations A(TA)7TAA (rs3064744) and P229Q (rs35350960) in the UGT1A1 gene. After pedigree investigation, we found that the patient's parents with modestly increased bilirubin had compound heterozygous mutations A(TA)7TAA and P229Q, which were GS. Bioinformatics analysis showed that A(TA)7TAA is in the TATA-box region of the gene UGT1A1 promoter, affecting gene transcriptional initiation, whereas P229Q modifies protein three-dimensional structure and may be harmful. In this pedigree, double homozygous mutations have a more severe phenotype than compound heterozygous mutations. Inherited causes of hyperbilirubinemia should be suspected after ruling out biliary obstruction, and early bilirubin reduction (< 103 µmol/L (6 mg/dL)) may reduce the risk of complications like cholecystitis in CNS2 patients, though further studies with longer follow-up are needed to confirm this observation.
Humans
;
Male
;
Glucuronosyltransferase/genetics*
;
Adult
;
Crigler-Najjar Syndrome/complications*
;
Cholecystitis/etiology*
;
Homozygote
;
Mutation
;
Pedigree
5.Huachansu injection enhances anti-colorectal cancer efficacy of irinotecan and alleviates its induced intestinal toxicity through upregulating UGT1A1-OATP1B3 expression in vitro and in vivo.
Bo JIANG ; Zhao-Yang MENG ; Yu-Jie HU ; Jun-Jun CHEN ; Ling ZONG ; Ling-Yan XU ; Xiang-Qi ZHANG ; Jing-Xian ZHANG ; Yong-Long HAN
Journal of Integrative Medicine 2025;23(5):576-590
OBJECTIVE:
Huachansu injection (HCSI), a promising anti-cancer Chinese medicine injection, has been reported to have the potential for reducing the toxicity of chemotherapy and improving the quality of life for colorectal cancer (CRC) patients. The objective of this study is to explore the synergistic and detoxifying effects of HCSI when used in combination with irinotecan (CPT-11).
METHODS:
To investigate the effect of HCSI on anti-CRC efficacy and intestinal toxicity of CPT-11, we measured changes in the biological behavior of LoVo cells in vitro, and anti-tumor effects in LoVo cell xenograft nude mice models in vivo. Meanwhile, the effect of HCSI on intestinal toxicity and the uridine diphosphate-glucuronosyltransferase 1A1 (UGT1A1) expression was investigated in the CPT-11-induced colitis mouse model. Subsequently, we measured the effect of HCSI and its 13 constituent bufadienolides on the expression of UGT1A1 and organic anion transporting polypeptides 1B3 (OATP1B3) in HepG2 cells.
RESULTS:
The combination index (CI) results showed that the combination of HCSI and CPT-11 exhibited a synergistic effect (CI < 1), which significantly suppressing the LoVo cell migration, enhancing G2/M and S phase arrest, and inhibiting tumor growth in vivo. Additionally, the damage to intestinal tissues was attenuated by HCSI in CPT-11-induced colitis model, while the increased expression of UGT1A1 in HepG2 cells and in mouse was observed.
CONCLUSION
The co-therapy with HCSI alleviated the intestinal toxicity induced by CPT-11 and exerted an enhanced anti-CRC effect. The detoxifying mechanism may be related to the increased expression of UGT1A1 and OATP1B3 by HCSI and its bufadienolides components. The findings of this study may serve as a theoretical insights and strategies to improve CRC patient outcomes. Please cite this article as: Jiang B, Meng ZY, Hu YJ, Chen JJ, Zong L, Xu LY, Zhang XQ, Zhang JX, Han YL. Huachansu injection enhances anti-colorectal cancer efficacy of irinotecan and alleviates its induced intestinal toxicity through upregulating UGT1A1-OATP1B3 expression in vitro and in vivo. J Integr Med. 2025; 23(5):576-590.
Irinotecan/therapeutic use*
;
Animals
;
Glucuronosyltransferase/genetics*
;
Humans
;
Colorectal Neoplasms/metabolism*
;
Drugs, Chinese Herbal/therapeutic use*
;
Mice, Nude
;
Mice
;
Up-Regulation/drug effects*
;
Male
;
Xenograft Model Antitumor Assays
;
Mice, Inbred BALB C
;
Hep G2 Cells
;
Cell Line, Tumor
;
Intestines/drug effects*
;
Amphibian Venoms
6.Evaluation of pharmacokinetics and metabolism of three marine-derived piericidins for guiding drug lead selection.
Weimin LIANG ; Jindi LU ; Ping YU ; Meiqun CAI ; Danni XIE ; Xini CHEN ; Xi ZHANG ; Lingmin TIAN ; Liyan YAN ; Wenxun LAN ; Zhongqiu LIU ; Xuefeng ZHOU ; Lan TANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(5):614-629
This study investigates the pharmacokinetics and metabolic characteristics of three marine-derived piericidins as potential drug leads for kidney disease: piericidin A (PA) and its two glycosides (GPAs), glucopiericidin A (GPA) and 13-hydroxyglucopiericidin A (13-OH-GPA). The research aims to facilitate lead selection and optimization for developing a viable preclinical candidate. Rapid absorption of PA and GPAs in mice was observed, characterized by short half-lives and low bioavailability. Glycosides and hydroxyl groups significantly enhanced the absorption rate (13-OH-GPA > GPA > PA). PA and GPAs exhibited metabolic instability in liver microsomes due to Cytochrome P450 enzymes (CYPs) and uridine diphosphoglucuronosyl transferases (UGTs). Glucuronidation emerged as the primary metabolic pathway, with UGT1A7, UGT1A8, UGT1A9, and UGT1A10 demonstrating high elimination rates (30%-70%) for PA and GPAs. This rapid glucuronidation may contribute to the low bioavailability of GPAs. Despite its low bioavailability (2.69%), 13-OH-GPA showed higher kidney distribution (19.8%) compared to PA (10.0%) and GPA (7.3%), suggesting enhanced biological efficacy in kidney diseases. Modifying the C-13 hydroxyl group appears to be a promising approach to improve bioavailability. In conclusion, this study provides valuable metabolic insights for the development and optimization of marine-derived piericidins as potential drug leads for kidney disease.
Animals
;
Male
;
Mice
;
Aquatic Organisms/chemistry*
;
Biological Availability
;
Cytochrome P-450 Enzyme System/metabolism*
;
Glucuronosyltransferase/metabolism*
;
Microsomes, Liver/metabolism*
;
Molecular Structure
;
Biological Products/pharmacokinetics*
;
Pyridines/pharmacokinetics*
7.Prokaryotic expression of human Alg1 protein and analysis of the transmembrane domain properties.
Dongzhi WEI ; Zhenghui CHEN ; Chundi WANG ; Xiaodong GAO ; Ning WANG
Chinese Journal of Biotechnology 2025;41(4):1535-1546
As the most common type of protein glycosylation, N-glycosylation begins with the synthesis of the dolichol-linked oligosaccharide (DLO) precursor in the endoplasmic reticulum. The mannosyltransferase Alg1 catalyzes the addition of the first mannose molecule to DLO, serving as a key enzyme in this biochemical pathway. The defect of human ALG1 gene can lead to the congenital disorders of glycosylation (CDG), i.e., ALG1-CDG. Therefore, it is of great significance to establish the expression and activity assay system of Homo sapiens Alg1 (HsAlg1) in vitro. In this study, full-length plasmid pET28a-His6-HsAlg1 and transmembrane domain-lacking plasmid pET28a-His6-HsAlg123-464 were constructed and expressed in Escherichia coli, and the activity of recombinant HsAlg1 and HsAlg123-464 was measured by liquid chromatography tandem mass spectrometry (LC-MS) with dolichyl-pyrophosphate GlcNAc2 (DPGn2) as the substrate. The results showed that HsAlg1 had transglycosylation activity, while the activity decreased after protein purification, which was partially restored upon re-addition of membrane components. However, HsAlg123-464 was unable to catalyze glycosylation. The results indicate that the N-terminal transmembrane domain (TMD) of HsAlg1 plays an important role in the catalytic reaction. This study lays a foundation for further expression and activity analysis of ALG1-CDG-related mutants.
Humans
;
Escherichia coli/metabolism*
;
Mannosyltransferases/biosynthesis*
;
Glycosylation
;
Recombinant Proteins/metabolism*
;
Protein Domains
8.The mechanism of GSK-3β/CREB signaling pathway regulating macrophage pyroptosis and participating in the occurrence and development of diabetic foot ulcer.
Hao HE ; Yanli YANG ; Li ZHANG
Chinese Journal of Cellular and Molecular Immunology 2024;40(12):1083-1088
Objective To investigate the role and possible mechanism of glycogen synthase kinase-3 beta (GSK-3β)/cAMP response element binding protein (CREB) signaling pathway in regulating macrophage pyroptosis in the pathogenesis and development of diabetic foot ulcer (DFU). Methods Thirty rats were randomly divided into control group, DFU group and GSK-3β inhibited group, with 10 rats in each group. Fasting blood glucose (FBG) was detected by dynamic blood glucose detector. The wound healing of each group was observed and recorded. The histopathologic changes of the wound were detected by HE staining. The level of wound fibrosis was detected by Masson staining. The protein levels of GSK-3β, CREB, gasdermin E (GSDME) and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) in wound tissue were detected by Western blotting. The co-expression of F4/80, GSDME and NLRP3 in wound tissue was detected by immunofluorescence staining. The serum levels of IL-1β and IL-18 were detected by ELISA. Results Compared with the control group, FBG in DFU group was increased. Compared with DFU group, FBG in GSK-3β inhibition group was decreased. The wound healing rate of rats in the inhibited GSK-3β group was higher than that in the DFU group from day 3 to day 14, and the difference was significant on day 14. Therefore, samples from day 14 were used in the follow-up experiment. Compared with the control group, the wound tissue of rats in DFU group was significantly damaged with collagen deposition defect, and the expressions of GSK-3β, CREB and apoptosis-related proteins GSDME and NLRP3 were increased, and the co-expressions of F4/80 and GSDME, F4/80 and NLRP3 were increased. Serum levels of IL-1β and IL-18 were increased. Compared with DFU group, most of the wound tissues of rats in GSK-3β group were healed. Collagen deposition at the fracture was increased. The expressions of GSK-3β, CREB and GSDME, NLRP3 were decreased. The expression levels of F4/80 and GSDME were reduced, along with a decrease in the co-expression of F4/80 and NLRP3. Additionally, there was a reduction in serum concentrations of IL-1β and IL-18. Conclusion GSK-3β/CREB signaling pathway and macrophage pyroptosis are significantly up-regulated in DFU rats. Inhibition of this pathway can promote DFU healing and down-regulate macrophage pyroptosis level.
Animals
;
Pyroptosis
;
Diabetic Foot/metabolism*
;
Glycogen Synthase Kinase 3 beta/metabolism*
;
Signal Transduction
;
Male
;
Rats
;
Cyclic AMP Response Element-Binding Protein/metabolism*
;
Macrophages/metabolism*
;
Rats, Sprague-Dawley
;
Wound Healing
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Interleukin-1beta/metabolism*
9.LIMP-2 enhances cancer stem-like cell properties by promoting autophagy-induced GSK3β degradation in head and neck squamous cell carcinoma.
Yuantong LIU ; Shujin LI ; Shuo WANG ; Qichao YANG ; Zhizhong WU ; Mengjie ZHANG ; Lei CHEN ; Zhijun SUN
International Journal of Oral Science 2023;15(1):24-24
Cancer stem cell-like cells (CSCs) play an integral role in the heterogeneity, metastasis, and treatment resistance of head and neck squamous cell carcinoma (HNSCC) due to their high tumor initiation capacity and plasticity. Here, we identified a candidate gene named LIMP-2 as a novel therapeutic target regulating HNSCC progression and CSC properties. The high expression of LIMP-2 in HNSCC patients suggested a poor prognosis and potential immunotherapy resistance. Functionally, LIMP-2 can facilitate autolysosome formation to promote autophagic flux. LIMP-2 knockdown inhibits autophagic flux and reduces the tumorigenic ability of HNSCC. Further mechanistic studies suggest that enhanced autophagy helps HNSCC maintain stemness and promotes degradation of GSK3β, which in turn facilitates nuclear translocation of β-catenin and transcription of downstream target genes. In conclusion, this study reveals LIMP-2 as a novel prospective therapeutic target for HNSCC and provides evidence for a link between autophagy, CSC, and immunotherapy resistance.
Humans
;
Autophagy
;
Carcinoma, Squamous Cell/pathology*
;
Cell Line, Tumor
;
Glycogen Synthase Kinase 3 beta/metabolism*
;
Head and Neck Neoplasms/pathology*
;
Neoplastic Stem Cells/pathology*
;
Squamous Cell Carcinoma of Head and Neck/pathology*
;
Lysosome-Associated Membrane Glycoproteins
10.Potentilla anserina polysaccharide alleviates cadmium-induced oxidative stress and apoptosis of H9c2 cells by regulating the MG53-mediated RISK pathway.
Lixia ZHAO ; Ju CHENG ; Di LIU ; Hongxia GONG ; Decheng BAI ; Wei SUN
Chinese Journal of Natural Medicines (English Ed.) 2023;21(4):279-291
Oxidative stress plays a crucial role in cadmium (Cd)-induced myocardial injury. Mitsugumin 53 (MG53) and its mediated reperfusion injury salvage kinase (RISK) pathway have been demonstrated to be closely related to myocardial oxidative damage. Potentilla anserina L. polysaccharide (PAP) is a polysaccharide with antioxidant capacity, which exerts protective effect on Cd-induced damage. However, it remains unknown whether PAP can prevent and treat Cd-induced cardiomyocyte damages. The present study was desgined to explore the effect of PAP on Cd-induced damage in H9c2 cells based on MG53 and the mediated RISK pathway. For in vitro evaluation, cell viability and apoptosis rate were analyzed by CCK-8 assay and flow cytometry, respectively. Furthermore, oxidative stress was assessed by 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) staining and using superoxide dismutase (SOD), catalase (CAT), and glutathione/oxidized glutathione (GSH/GSSG) kits. The mitochondrial function was measured by JC-10 staining and ATP detection assay. Western blot was performed to detect the expression of proteins related to MG53, the RISK pathway, and apoptosis. The results indicated that Cd increased the levels of reactive oxygen species (ROS) in H9c2 cells. Cd decreased the activities of SOD and CAT and the ratio of GSH/GSSG, resulting in decreases in cell viability and increases in apoptosis. Interestingly, PAP reversed Cd-induced oxidative stress and cell apoptosis. Meanwhile, Cd reduced the expression of MG53 in H9c2 cells and inhibited the RISK pathway, which was mediated by decreasing the ratio of p-AktSer473/Akt, p-GSK3βSer9/GSK3β and p-ERK1/2/ERK1/2. In addition, Cd impaired mitochondrial function, which involved a reduction in ATP content and mitochondrial membrane potential (MMP), and an increase in the ratio of Bax/Bcl-2, cytoplasmic cytochrome c/mitochondrial cytochrome c, and Cleaved-Caspase 3/Pro-Caspase 3. Importantly, PAP alleviated Cd-induced MG53 reduction, activated the RISK pathway, and reduced mitochondrial damage. Interestingly, knockdown of MG53 or inhibition of the RISK pathway attenuated the protective effect of PAP in Cd-induced H9c2 cells. In sum, PAP reduces Cd-induced damage in H9c2 cells, which is mediated by increasing MG53 expression and activating the RISK pathway.
Cadmium/metabolism*
;
Caspase 3/metabolism*
;
Potentilla/metabolism*
;
Glycogen Synthase Kinase 3 beta/pharmacology*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Cytochromes c/metabolism*
;
Glutathione Disulfide/pharmacology*
;
Oxidative Stress
;
Myocytes, Cardiac
;
Reactive Oxygen Species/metabolism*
;
Reperfusion Injury/metabolism*
;
Apoptosis
;
Polysaccharides/pharmacology*
;
Adenosine Triphosphate/metabolism*

Result Analysis
Print
Save
E-mail