1.Analysis of monosaccharides in Radix Rehmanniae by GC.
Yanping ZHANG ; Yuanzhi YU ; Hong ZHANG
China Journal of Chinese Materia Medica 2009;34(4):419-422
OBJECTIVETo isolate and purify the polysaccharides from Radix Rehmanniae and analysis the monosaccharides composition.
METHODThe polysaccharides were extracted with hot water and precipitated by alcohol. Proteins in the precipitates were removed by TCA method. The products were further purified with column chromatography on Superdex 200 and Sephadex G100. The SRP I and SRP II were identified as homogeneous polysaccharide by HPLC, respectively, and then analyzed by GC after being hydrolysised.
RESULTTwo homogeneous polysaccharides (SRP I and SRP II) were obtained from Radix Rehmanniae.
CONCLUSIONSRP I contained rhamnose, arabinose, glucose and galactose in the percentage of 6.11%, 66.46%, 3.93% and 21.50%. SRP I was composed of rhamnose, fucose, mannose, galactose and fructose in the percentage of 21.82%, 24.47%, 10.48%, 29.94% and 13.29%.
Arabinose ; chemistry ; isolation & purification ; Chromatography, Gas ; methods ; Clinical Laboratory Techniques ; Drugs, Chinese Herbal ; analysis ; Fructose ; chemistry ; isolation & purification ; Fucose ; chemistry ; isolation & purification ; Galactose ; chemistry ; isolation & purification ; Glucose ; chemistry ; isolation & purification ; Mannose ; chemistry ; isolation & purification ; Monosaccharides ; chemistry ; isolation & purification ; Plant Extracts ; chemistry ; Polysaccharides ; chemistry ; isolation & purification ; Rhamnose ; chemistry ; isolation & purification ; Scrophulariaceae ; chemistry
2.Composition and Partial Structure Characterization of Tremella Polysaccharides.
Mycobiology 2009;37(4):286-294
Heteropolysaccharides isolated from liquid cultures of nine Tremella species contained 0.3 to 1.2% protein, 2.7 to 5% ash, 0.9 to 3.4% acetyl groups, 76.5 to 84.2% carbohydrates and trace amounts of starch. The polysaccharides in aqueous solution were slightly acidic (pH 5.1 to 5.6). They consisted of the following monomeric sugars: fucose, ribose, xylose, arabinose, mannose, galactose, glucose and glucuronic acid. The backbones of the polysaccharide structures consisted of alpha-(1-->3)-links while the side chains were beta-linked.
Arabinose
;
Carbohydrates
;
Fucose
;
Galactose
;
Glucose
;
Glucuronic Acid
;
Mannose
;
Polysaccharides
;
Ribose
;
Starch
;
Xylose
3.Rational design of L-arabinose isomerase from Lactobacillus fermentum and its application in D-tagatose production.
Juan LI ; Jing WU ; Sheng CHEN ; Wei XIA
Chinese Journal of Biotechnology 2023;39(3):1107-1118
L-arabinose isomerase (L-AI) is the key enzyme that isomerizes D-galactose to D-tagatose. In this study, to improve the activity of L-arabinose isomerase on D-galactose and its conversion rate in biotransformation, an L-arabinose isomerase from Lactobacillus fermentum CGMCC2921 was recombinantly expressed and applied in biotransformation. Moreover, its substrate binding pocket was rationally designed to improve the affinity and catalytic activity on D-galactose. We show that the conversion of D-galactose by variant F279I was increased 1.4 times that of the wild-type enzyme. The Km and kcat values of the double mutant M185A/F279I obtained by superimposed mutation were 530.8 mmol/L and 19.9 s-1, respectively, and the catalytic efficiency was increased 8.2 times that of the wild type. When 400 g/L lactose was used as the substrate, the conversion rate of M185A/F279I reached a high level of 22.8%, which shows great application potential for the enzymatic production of tagatose from lactose.
Galactose/metabolism*
;
Limosilactobacillus fermentum/genetics*
;
Lactose
;
Hexoses/metabolism*
;
Aldose-Ketose Isomerases/genetics*
;
Hydrogen-Ion Concentration
4.Inhibition of advanced glycation end product formation by burdock root extract.
Journal of Nutrition and Health 2016;49(4):233-240
PURPOSE: Diabetic complications are a major concern to manage progression of diabetes. Production of advanced glycation end products (AGEs) due to high blood glucose is one of the mechanisms leading to diabetic complications. Multiple pharmacologic AGE inhibitory agents are currently under development, but clinical applications are still limited due to safety issues. Thus, it is necessary to identify a safe anti-glycation agent. It is known that burdock roots have antioxidant, anti-inflammatory, and anti-cancer activities. The objective of the present study was to investigate the inhibitory role of burdock roots on the formation of high glucose-induced glycation of bovine serum albumin (BSA). METHODS: In this study, glycation of BSA by glucose, galactose, or fructose at 37℃ for 3 weeks was assessed based on levels of α-dicarbonyl compounds (early-stage glycation products), fructosamine (intermediate products of glycation), and fluorescent AGEs (late-stage glycation products). In order to compare the inhibitory actions of burdock root extract in AGE formation, aminoguanidine (AG), a pharmacological AGE inhibitor, was used as a positive control. RESULTS: BSA glycation by glucose, fructose, and galatose was dose- and time-dependently produced. Burdock root extract at a concentration of 4 mg/mL almost completely inhibited glucose-induced BSA glycation. The results demonstrate that burdock root extract inhibited AGE formation with an IC₅₀ value of 1.534 mg/mL, and inhibitory activity was found to be more effective than the standard anti-glycation agent aminoguanidine. This study identified a novel function of burdock root as a potential anti-glycation agent. CONCLUSION: Our findings suggest that burdock root could be beneficial for preventing diabetic complications.
Arctium*
;
Blood Glucose
;
Diabetes Complications
;
Fructosamine
;
Fructose
;
Galactose
;
Glucose
;
Glycosylation End Products, Advanced
;
Hyperglycemia
;
Serum Albumin, Bovine
5.Screening of food-grade microorganisms for biotransformation of D-tagatose and cloning and expression of L-arabinose isomerase.
Yan MEN ; Yueming ZHU ; Yuping GUAN ; Tongcun ZHANG ; Ken IZUMORI ; Yuanxia SUN
Chinese Journal of Biotechnology 2012;28(5):592-601
L-Arabinose isomerase (L-AI) is an intracellular enzyme that catalyzes the reversible isomerization of D-galactose and D-tagatose. Given the widespread use of D-tagatose in the food industry, food-grade microorganisms and the derivation of L-AI for the production of D-tagatose is gaining increased attention. In the current study, food-grade strains from different foods that can convert D-galactose to D-tagatose were screened. According to physiological, biochemical, and 16S rDNA gene analyses, the selected strain was found to share 99% identity with Pediococcus pentosaceus, and was named as Pediococcus pentosaceus PC-5. The araA gene encoding L-AI from Pediococcus pentosaceus PC-5 was cloned and overexpressed in E. coli BL21. The yield of D-tagatose using D-galactose as the substrate catalyzed by the crude enzyme in the presence of Mn2+ was found to be 33% at 40 degrees C.
Aldose-Ketose Isomerases
;
biosynthesis
;
genetics
;
Biotransformation
;
Cloning, Molecular
;
Escherichia coli
;
genetics
;
metabolism
;
Galactose
;
metabolism
;
Genetic Vectors
;
genetics
;
Hexoses
;
metabolism
;
Pediococcus
;
classification
;
genetics
;
isolation & purification
;
Recombinant Proteins
;
biosynthesis
;
genetics
6.Study of mycelial polysaccharide from Paraisaria dubia of Ophiocordyceps gracilis asexual.
Yue WANG ; Zhao-Lan LI ; Fei-Ya SUO ; Dong-Ping SUN
China Journal of Chinese Materia Medica 2019;44(8):1704-1709
In order to provide a foundation for the development and application of Ophiocordyceps gracilis and increase the new resources of cordyceps,an asexual Paraisaria dubia was isolated from an O. gracilis fruit body. After 10 days of liquid fermentation,white globular mycelium and clear transparent fermentation were produced. The mycelium was extracted by hot water and precipitated with ethanol to obtain intracellular crude polysaccharide. The protein was deproteinized to obtain deproteinized polysaccharide. The intracellular pure polysaccharide was purified by Sepharose 4 B column chromatography and were analyzed by UV,IR,1 H-NMR,and13 CNMR data,as well as GC and HPLC. The results showed that the intracellular polysaccharide of P. dubia was composed of glucose,galactose and mannose with a molar ratio of 25. 54 ∶2 ∶1. It was a β-configuration glycosylic bond,containing pyranoside. The initial connection of polysaccharide was β(1→2)(1→4)(1→6) connection. This experiment provides a theoretical basis for the development and application of P. dubia.
Fungal Polysaccharides
;
chemistry
;
Galactose
;
Glucose
;
Hypocreales
;
chemistry
;
Mannose
;
Mycelium
;
chemistry
7.Activation of Macrophages by Exopolysaccharide Produced by MK1 Bacterial Strain Isolated from Neungee Mushroom, Sarcodon aspratus.
Sun A IM ; Wenxia WANG ; Chong Kil LEE ; Young Nam LEE
Immune Network 2010;10(6):230-238
BACKGROUND: The MK1 strain, a novel bacterial isolate from soft-rotten tissue of the Neungee mushroom, produces copious amounts of exopolysaccharide (EPS) in a dextrose minimal medium. This study examined the molecular characteristics and immunomodulatory activity of MK1 EPS. METHODS: The EPS in the culture supernatant was purified by cold ethanol precipitation, and characterized by SDS-PAGE/silver staining and Bio-HPLC. The immunomodulatory activities of the EPS were examined using the mouse monocytic cell line, RAW 264.7 cells. RESULTS: The molecular weights of the purified EPS were rather heterogeneous, ranging from 10.6 to 55 kDa. The EPS was composed of glucose, rhamnose, mannose, galactose, and glucosamine at an approximate molar ratio of 1.00:0.8:0.71:0.29:0.21. EPS activated the RAW cells to produce cytokines, such as TNF-alpha and IL-1beta, and nitric oxide (NO). EPS also induced the expression of co-stimulatory molecules, such as B7-1, B7-2 and ICAM-1, and increased the phagocytic activity. The macrophage-activating activity of EPS was not due to endotoxin contamination because the treatment of EPS with polymyin B did not reduce the macrophage-activating activity. CONCLUSION: The EPS produced from the MK1 strain exerts macrophage-activating activity.
Agaricales
;
Animals
;
Cell Line
;
Cold Temperature
;
Cytokines
;
Ethanol
;
Galactose
;
Glucosamine
;
Glucose
;
Intercellular Adhesion Molecule-1
;
Macrophages
;
Mannose
;
Mice
;
Molar
;
Molecular Weight
;
Nitric Oxide
;
Rhamnose
;
Sprains and Strains
;
Tumor Necrosis Factor-alpha
8.Effect of fructose or sucrose feeding with different levels on oral glucose tolerance test in normal and type 2 diabetic rats.
Sanghee KWON ; You Jin KIM ; Mi Kyung KIM
Nutrition Research and Practice 2008;2(4):252-258
This study was designed to determine whether acute fructose or sucrose administration at different levels (0.05 g/kg, 0.1 g/kg or 0.4 g/kg body weight) might affect oral glucose tolerance test (OGTT) in normal and type 2 diabetic rats. In OGTT, there were no significant differences in glucose responses between acute fructose- and sucrose-administered groups. However, in normal rats, the AUCs of the blood glucose response for the fructose-administered groups tended to be lower than those of the control and sucrose-administered groups. The AUCs of the lower levels fructoseor sucrose-administered groups tended to be smaller than those of higher levels fructose- or sucrose-administered groups. In type 2 diabetic rats, only the AUC of the lowest level of fructose-administered (0.05 g/kg body weight) group was slightly smaller than that of the control group. The AUCs of fructose-administered groups tended to be smaller than those of the sucrose-administered groups, and the AUCs of lower levels fructose-administered groups tended to be smaller than those fed higher levels of fructose. We concluded from this experiment that fructose has tendency to be more effective in blood glucose regulation than sucrose, and moreover, that smaller amount of fructose is preferred to larger amount. Specifically, our experiments indicated that the fructose level of 0.05 g/kg body weight as dietary supplement was the most effective amount for blood glucose regulation from the pool of 0.05 g/kg, 0.1 g/kg and 0.4 g/kg body weights. Therefore, our results suggest the use of fructose as the substitute sweetener for sucrose, which may be beneficial for blood glucose regulation.
Animals
;
Area Under Curve
;
Blood Glucose
;
Body Weight
;
Dietary Supplements
;
Fructose
;
Glucose
;
Glucose Tolerance Test
;
Rats
;
Sucrose
;
Sweetening Agents
9.Ethanol Production from Various Sugars and Cellulosic Biomass by White Rot Fungus Lenzites betulinus.
Kyung Hoan IM ; Trung Kien NGUYEN ; Jaehyuk CHOI ; Tae Soo LEE
Mycobiology 2016;44(1):48-53
Lenzites betulinus, known as gilled polypore belongs to Basidiomycota was isolated from fruiting body on broadleaf dead trees. It was found that the mycelia of white rot fungus Lenzites betulinus IUM 5468 produced ethanol from various sugars, including glucose, mannose, galactose, and cellobiose with a yield of 0.38, 0.26, 0.07, and 0.26 g of ethanol per gram of sugar consumed, respectively. This fungus relatively exhibited a good ethanol production from xylose at 0.26 g of ethanol per gram of sugar consumed. However, the ethanol conversion rate of arabinose was relatively low (at 0.07 g of ethanol per gram sugar). L. betulinus was capable of producing ethanol directly from rice straw and corn stalks at 0.22 g and 0.16 g of ethanol per gram of substrates, respectively, when this fungus was cultured in a basal medium containing 20 g/L rice straw or corn stalks. These results indicate that L. betulinus can produce ethanol efficiently from glucose, mannose, and cellobiose and produce ethanol very poorly from galactose and arabinose. Therefore, it is suggested that this fungus can ferment ethanol from various sugars and hydrolyze cellulosic materials to sugars and convert them to ethanol simultaneously.
Animals
;
Arabinose
;
Basidiomycota
;
Biomass*
;
Carbohydrates*
;
Cellobiose
;
Ethanol*
;
Fruit
;
Fungi*
;
Galactose
;
Gills
;
Glucose
;
Mannose
;
Trees
;
Xylose
;
Zea mays
10.Development of a new HPLC technique for analyzing monosaccharide composition and its application in the quality control of Silybum marianum polysaccharide.
Ling-Min TIAN ; Xue-Mei QIU ; Zi-Jing PAN ; You LÜ ; Xing-Bin YANG
Acta Pharmaceutica Sinica 2010;45(4):498-504
A new HPLC-UV technique for the separation and analysis of 10 monosaccharides achieved within 13.5 min using 1-phenyl-3-methyl-5-pyrazolone (PMP) as the labelling molecule of the reductive monosaccharides has been established by combining common high performance liquid chromatography-UV and C18 column. The established technique was applied to the quantification of the monosaccharide components in extract of Silybum marianum. The results showed that the tested 10 monosaccharides as PMP derivatives were baseline separated under the HPLC conditions proposed. It was confirmed that Silybum marianum extract was composed of mannose, rhamnose, glucuronic acid, galacturonic acid, glucose, xylose, galactose and arabinose with the molar ratio of 0.66:0.84:0.58:1.0:1.6:0.69:2.7:4.8. Quantitative recoveries of the compositional monosaccharides separated from the extract were in the range of 92.4%-104.0%, and the RSD values fell within 0.68%-3.81%. The results demonstrated that the proposed HPLC method was simple, rapid, convenient, and precise, and it was applicable to the analysis of the compositional monosaccharides of Silybum marianum extract.
Antipyrine
;
analogs & derivatives
;
chemistry
;
Arabinose
;
analysis
;
Chromatography, High Pressure Liquid
;
methods
;
Galactose
;
analysis
;
Glucose
;
analysis
;
Glucuronic Acid
;
analysis
;
Hexuronic Acids
;
analysis
;
Mannose
;
analysis
;
Milk Thistle
;
chemistry
;
Monosaccharides
;
analysis
;
Plants, Medicinal
;
chemistry
;
Polysaccharides
;
chemistry
;
isolation & purification
;
Quality Control
;
Rhamnose
;
analysis
;
Seeds
;
chemistry
;
Spectrophotometry, Ultraviolet
;
methods
;
Xylose
;
analysis