1.Toxicity and metabolism of 3-bromopyruvate in Caenorhabditis elegans.
Qiao-Ling GU ; Yan ZHANG ; Xi-Mei FU ; Zhao-Lian LU ; Yao YU ; Gen CHEN ; Rong MA ; Wei KOU ; Yong-Mei LAN
Journal of Zhejiang University. Science. B 2020;21(1):77-86
In this study, we aimed to evaluate the toxic effects, changes in life span, and expression of various metabolism-related genes in Caenorhabditis elegans, using RNA interference (RNAi) and mutant strains, after 3-bromopyruvate (3-BrPA) treatment. C. elegans was treated with various concentrations of 3-BrPA on nematode growth medium (NGM) plates, and their survival was monitored every 24 h. The expression of genes related to metabolism was measured by the real-time fluorescent quantitative polymerase chain reaction (qPCR). Nematode survival in the presence of 3-BrPA was also studied after silencing three hexokinase (HK) genes. The average life span of C. elegans cultured on NGM with 3-BrPA was shortened to 5.7 d compared with 7.7 d in the control group. hxk-1, hxk-2, and hxk-3 were overexpressed after the treatment with 3-BrPA. After successfully interfering hxk-1, hxk-2, and hxk-3, the 50% lethal concentration (LC50) of all mutant nematodes decreased with 3-BrPA treatment for 24 h compared with that of the control. All the cyp35 genes tested were overexpressed, except cyp-35B3. The induction of cyp-35A1 expression was most obvious. The LC50 values of the mutant strains cyp-35A1, cyp-35A2, cyp-35A4, cyp-35B3, and cyp-35C1 were lower than that of the control. Thus, the toxicity of 3-BrPA is closely related to its effect on hexokinase metabolism in nematodes, and the cyp-35 family plays a key role in the metabolism of 3-BrPA.
Animals
;
Caenorhabditis elegans/metabolism*
;
Caenorhabditis elegans Proteins/genetics*
;
Cytochrome P-450 Enzyme System/genetics*
;
Hexokinase/physiology*
;
Pyruvates/toxicity*
;
RNA, Messenger/analysis*