1.Polarization of protective immunity induced by replication-incompetent adenovirus expressing glycoproteins of pseudorabies virus.
Young Woo HAN ; Abi G ALEYAS ; Junu A GEORGE ; Seon Ju KIM ; Hye Kyung KIM ; Hyun A YOON ; Dong Jin YOO ; Seong Ho KANG ; Koanhoi KIM ; Seong Kug EO
Experimental & Molecular Medicine 2008;40(6):583-595
Replication-incompetent adenoviruses expressing three major glycoproteins (gB, gC, and gD) of pseudorabies virus (PrV) were constructed and used to examine the ability of these glycoproteins to induce protective immunity against a lethal challenge. Among three constructs, recombinant adenovirus expressing gB (rAd-gB) was found to induce the most potent immunity biased to Th1-type, as determined by the IgG isotype ratio and the profile of the Th1/Th2 cytokine production. Conversely, the gC-expressing adenovirus (rAd-gC) revealed Th2-type immunity and the gD-expressing adenovirus (rAd-gD) induced lower levels of IFN-gamma and IL-4 production than other constructs, except IL-2 production. Mucosal delivery of rAd-gB induced mucosal IgA and serum IgG responses and biased toward Th2-type immune responses. However, these effects were not observed in response to systemic delivery of rAd-gB. In addition, rAd-gB appeared to induce effective protective immunity against a virulent viral infection, regardless of whether it was administered via the muscular or systemic route. These results suggest that administration of replication-incompetent adenoviruses can induce different types of immunity depending on the expressed antigen and that recombinant adenoviruses expressing gB induced the most potent Th1-biased humoral and cellular immunity and provided effective protection against PrV infection.
Adenoviridae/genetics/*immunology/metabolism
;
Animals
;
Antibody Formation
;
Cell Line
;
Cytokines/immunology
;
Female
;
Glycoproteins/biosynthesis/genetics/*immunology
;
Herpesvirus 1, Suid/genetics/*immunology/physiology
;
Immunity, Cellular
;
Immunoglobulin G/immunology
;
Mice
;
Mice, Inbred C57BL
;
Pseudorabies/*immunology/prevention & control
;
Pseudorabies Vaccines/administration & dosage/*immunology
;
Swine
;
Th1 Cells/immunology
;
Th2 Cells/immunology
;
*Virus Replication
2.C3d-M28 enhanced DNA vaccination induced humoral immune response to glycoprotein C of pseudorabies virus.
Huiying FAN ; Zhongyong LIU ; Tiezhu TONG ; Xing LIU ; Aizhen GUO
Chinese Journal of Biotechnology 2009;25(7):987-992
We studied the immunogenicity of pseudorabies virus gC DNA vaccination by fusing the murine complement C3d receptor binding domain. First, pseudorabies virus gC gene was linked to four copies of C3d receptor binding domain (M284), and then cloned into the vector pcDNA3.1 to construct the recombinant plasmid sgC-M284. Through the experiment of immunized BALB/c mice, we found that the enzyme linked immunosorbent assay (ELISA) antibody titer for sgC-M284 was 17-fold higher than that for sgC alone, and protective rate of mice was augmented from 25% to 88% after lethal dose PrV (316 LD50) challenge. In addition, the IL-4 levels for sgC-M284 immunization approached that for the pseudorabies virus inactivated vaccine. In conclusion, we demonstrated murine C3d receptor binding domain fusion significantly increased Th2-biased immune response by inducing IL-4 production.
Adjuvants, Immunologic
;
physiology
;
Animals
;
Antibody Formation
;
immunology
;
Binding Sites
;
Cloning, Molecular
;
Complement C3d
;
genetics
;
immunology
;
Herpesvirus 1, Suid
;
genetics
;
immunology
;
Interleukin-4
;
immunology
;
Mice
;
Mice, Inbred BALB C
;
Pseudorabies Vaccines
;
immunology
;
Receptors, Complement 3d
;
genetics
;
Recombinant Proteins
;
biosynthesis
;
genetics
;
immunology
;
Swine
;
Vaccines, DNA
;
immunology
;
Viral Envelope Proteins
;
pharmacology
;
Viral Fusion Proteins
;
immunology