1.Research advances in herpesviruses glycoprotein N gene and its encoded protein.
Chinese Journal of Virology 2014;30(2):208-212
Glycoprotein N is encoded by glycoprotein N (gN) gene of herpesviruses. The amino acid composition and expression level of this protein vary among difference species of herpesviruses. According to present studies, gN protein is expressed in cytoplasm of host cells, mainly in endoplasmic reticulum. The gN forms a complex with glycoprotein M in host cells. The complex is involved in the processes of viral replication and inter-cellular infection. Moreover, this protein plays a role in immune evasion from host immune system. The study will provide a theoretical basis for further study of herpesvirus gN gene and its encoded protein.
Animals
;
Herpesviridae
;
genetics
;
metabolism
;
Herpesviridae Infections
;
virology
;
Humans
;
Viral Envelope Proteins
;
genetics
;
metabolism
3.Progress on the Function of Herpesvirus-encoded MicroRNAs.
Chinese Journal of Virology 2015;31(6):704-711
Since Epstein Barr virus was shown to encode microRNAs(miRNAs) in 2004, more than 470 miRNAs have been discovered in α-, β-, and γ-herpesviruses. MiRNAs are small non-coding RNA molecules and generally only have 18-25 nucleotides in length, which can regulate the expression of target genes by targeting its transcripts. Herpesvirus-encoded miRNAs not only target the key genes from latency to lytic replication, but also regulate various host cellular genes. Current data manifest that herpesvirus-encoded miRNAs can regulate viral latent infection and lytic replication, immune recognition, apoptosis, and tumorigenesis. The purpose of this paper is to summarize the targets and their fuction of hepesvirus-encoded miRNAs, in order to provide theoretical support for further analysis herpesviral pathogenesis.
Animals
;
Herpesviridae
;
genetics
;
metabolism
;
Herpesviridae Infections
;
virology
;
Humans
;
MicroRNAs
;
genetics
;
metabolism
;
RNA, Viral
;
genetics
;
metabolism
4.Role of tegument proteins in herpesvirus assembly and egress.
Haitao GUO ; Sheng SHEN ; Lili WANG ; Hongyu DENG
Protein & Cell 2010;1(11):987-998
Morphogenesis and maturation of viral particles is an essential step of viral replication. An infectious herpesviral particle has a multilayered architecture, and contains a large DNA genome, a capsid shell, a tegument and an envelope spiked with glycoproteins. Unique to herpesviruses, tegument is a structure that occupies the space between the nucleocapsid and the envelope and contains many virus encoded proteins called tegument proteins. Historically the tegument has been described as an amorphous structure, but increasing evidence supports the notion that there is an ordered addition of tegument during virion assembly, which is consistent with the important roles of tegument proteins in the assembly and egress of herpesviral particles. In this review we first give an overview of the herpesvirus assembly and egress process. We then discuss the roles of selected tegument proteins in each step of the process, i.e., primary envelopment, de-envelopment, secondary envelopment and transport of viral particles. We also suggest key issues that should be addressed in the near future.
Animals
;
Herpesviridae
;
physiology
;
Herpesviridae Infections
;
virology
;
Humans
;
Viral Proteins
;
physiology
;
Virus Assembly
;
Virus Release
5.Research Advances in Cyprinid Herpesvirus 3.
Shucheng ZHENG ; Qing WANG ; Yingying LI ; Weiwei ZENG ; Yingying WANG ; Chun LIU ; Hongru LIANG ; Cunbin SHI
Chinese Journal of Virology 2016;32(1):108-120
Cyprinid herpesvirus 3 (CyHV-3) is the causative agent of an extremely contagious and aggressive disease afflicting common corp Cyprinus carpio L. termed koi herpesvirus disease (KHVD). Since it was first reported in 1997, the virus has spread worldwide rapidly, leading to enormous financial losses in industries based on common carp and koi carp. This review summarizes recent advances in CyHV-3 research on the etiology, epidemiology, pathogenesis, diagnosis, prevention, and control of KHVD.
Animals
;
Fish Diseases
;
diagnosis
;
virology
;
Fishes
;
classification
;
virology
;
Herpesviridae
;
genetics
;
isolation & purification
;
physiology
;
Herpesviridae Infections
;
diagnosis
;
veterinary
;
virology
6.Molecular Mechanism of Glycoprotein-induced Cell-Cell Fusion of Herpesviruses.
Chinese Journal of Virology 2016;32(1):101-107
Herpesviridae is a large family comprising linear, double-stranded DNA viruses. Herpesviridae contains three subfamilies: α-, β- and γ-herpesviruses. The glycoproteins gB, gH and gL of each subfamily form the "core fusion function" in cell-cell fusion. Other herpesviruses also need additional glycoproteins to promote fusion, such as gD of the Herpes simplex virus, gp42 of the Epstein-Barr virus, and gO or UL128-131 of the Human cytomegalovirus. In contrast, glycoproteins gM or gM/gN of herpesvirus inhibit fusion. We describe the molecular mechanisms of glycoprotein-induced fusion and entry of herpesviruses. It will be helpful to further study the pathogenic mechanism of herpesvirus.
Animals
;
Cell Fusion
;
Glycoproteins
;
genetics
;
metabolism
;
Herpesviridae
;
genetics
;
metabolism
;
Herpesviridae Infections
;
physiopathology
;
virology
;
Humans
;
Viral Proteins
;
genetics
;
metabolism
7.Progress in microRNAs associated with major avian viruses.
Chaolai MAN ; Weitao MU ; Dongxue ZHAO ; Yang CHANG
Chinese Journal of Biotechnology 2015;31(9):1289-1300
Recently, avian viral diseases have become one of the main models to study mechanisms of viral infections and pathogenesis. The study of regulatory relationships and mechanisms between viruses and microRNAs has also become the focus. In this review, we briefly summarize the general situations of microRNAs encoded by avian herpesviruses. Also, we analyze the regulatory relationships between tumorigenicity of avian herpesviruses and microRNAs. Additionally, the possible applications for prevention and treatment of viral diseases (such as infectious bursal disease, avian influenza and avian leucosis) using the regulatory mechanisms of microRNAs are also discussed.
Animals
;
Avian Leukosis
;
Birds
;
virology
;
Birnaviridae Infections
;
Herpesviridae
;
genetics
;
Influenza in Birds
;
MicroRNAs
;
genetics
8.Latent infection of human herpes virus in hematopoietic system.
Ke-Fu WU ; Xiao-Tong MA ; Guo-Guang ZHENG ; Yu-Hua SONG
Journal of Experimental Hematology 2008;16(6):1251-1256
Up to date, eight types of human herpes viruses have been identified, all of which are ubiquitous, and usually establish latent infection in the host after primary infection. Since most of the herpes viruses are maintained in an asymptomatic form, they are often neglected. However, under some circumstances, these herpes viruses can cause fatal or severe diseases. Furthermore, the association of herpes viruses with hematopoietic malignancies is attracting researchers' attention. With the extensive development of hematopoietic stem cell and organ transplantation, reports regarding transplantation failure and complication caused by infection of human herpes virus has been increasing. Cytokine storm was firstly suggested as the mechanism of graft-versus-host diseases. In recent years, which has also been applied in the pathogenesis research of inflammation, and is supposed to play an important role in severe virus infection. In this paper, through discussing the possible role of latent infection of human herpes virus in the failure or complication of bone marrow or hematopoietic stem cell transplantation, and in refractory leukemia, the function and significance of latent infection of human herpes virus and the cytokine storm it caused were investigated.
Cytokines
;
immunology
;
Hematopoietic System
;
immunology
;
virology
;
Herpesviridae Infections
;
Humans
;
Virus Latency
9.Experimental study of mouse cytomegalovirus infected mice.
Wen, CUI ; Yongsui, DONG ; Feng, FANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2002;22(3):260-4
In order to investigate the human cytomegalovirus (HCMV) infection, the mouse cytomegalovirus (MCMV) infected mice were experimentally studied. 6 to 8 week old female BALB/C mice with immunosuppression were selected to undergo the MCMV inoculations: intracranial inoculation and peritoneal inoculation. MCMV of the infected mice in various organs and tissues were detected by using beta-gal staining and in situ nucleic acid hybridization assay. The pathological changes were observed in HE staining paraffin-embedded sections. It was found that all the MCMV infected mice showed the retardation of growth and development, and feather looseness. Both intracranial inoculation of 10(4) PFU viruses or peritoneal inoculation of 10(6) PFU viruses resulted in the pathological changes, to some extent, of various organs and tissues in the mice. The pathological changes in liver were consistent with the amount of beta-gal staining positive cells, indicating the liver lesions were mainly caused by viral proliferation. It was also found that the viruses in the immunosuppressed mice subjected to intracranial inoculation could spread to whole body organs, while the viruses in the immunosuppressed mice subjected to intrapeitoneal inoculation couldn't spread to the brain, suggesting blood-brain barrier could prevent the virus from spreading to the brain.
Blood-Brain Barrier
;
Brain/pathology
;
Brain/virology
;
Disease Models, Animal
;
*Herpesviridae Infections/pathology
;
*Herpesviridae Infections/virology
;
Immunocompromised Host
;
Liver/pathology
;
Liver/virology
;
Lung/pathology
;
Lung/virology
;
Mice, Inbred BALB C
;
*Muromegalovirus
10.Advances in pathologic diagnosis of lymphoma.
Chinese Journal of Pathology 2005;34(6):322-324