1.Circular RNA circRSF1 binds to HuR to promote radiation-induced inflammatory phenotype in hepatic stellate cells.
Pei Tao ZHOU ; Bing Lin CHENG ; Yi Ning SUN ; De Hua WU ; Yu Han CHEN
Journal of Southern Medical University 2023;43(1):46-51
OBJECTIVE:
To investigate whether circular RNA circRSF1 regulates radiation-induced inflammatory phenotype of hepatic stellate cells (HSCs) by binding to HuR protein and repressing its function.
METHODS:
Human HSC cell line LX2 with HuR overexpression or knockdown was exposed to 8 Gy X-ray irradiation, and the changes in the expression of inflammatory factors (IL-1β, IL-6 and TNF-α) were detected by qRT-PCR. The expressions of IκBα and phosphorylation of NF-κB were detected with Western blotting. The binding of circRSF1 to HuR was verified by RNA pull-down assay and RNA-binding protein immunoprecipitation (RIP). The expressions of inflammatory factors, IκBα and the phosphorylation of NF-κB were detected after modifying the interaction between circRSF1 and HuR.
RESULTS:
Knockdown of HuR significantly up- regulated the expressions of IL-1β, IL-6 and TNF-α, decreased IκBα expression and promoted NF-κB phosphorylation in irradiated LX2 cells, whereas overexpression of HuR produced the opposite changes (P < 0.05). Overexpression or knockdown of circRSF1 did not significantly affect the expression of HuR. RNA pull-down and RIP experiments confirmed the binding between circRSF1 and HuR. Overexpression of circRSF1 significantly reduced the binding of HuR to IκBα and down-regulated the expression of IκBα (P < 0.05). Overexpression of circRSF1 combined with HuR overexpression partially reversed the up-regulation of the inflammatory factors, down-regulated IκBα expression and increased phosphorylation of NFκB in LX2 cells, while the opposite effects were observed in cells with knockdown of both circRSF1 and HuR (P < 0.05).
CONCLUSION
circRSF1 reduces IκBα expression by binding to HuR to promote the activation of NF-κB pathway, thereby enhancing radiation- induced inflammatory phenotype of HSCs.
Humans
;
Hepatic Stellate Cells/radiation effects*
;
Interleukin-6
;
NF-kappa B
;
NF-KappaB Inhibitor alpha
;
Phenotype
;
RNA
;
RNA, Circular/metabolism*
;
Tumor Necrosis Factor-alpha
;
ELAV-Like Protein 1/metabolism*