1.Protective effects of TAT-tCNTF fusion protein on SH-SY5Y cells induced by ?-amyloid peptide(25-35)
Hengyan QU ; Zeyuan LIU ; Yuanyuan LI ; Manji SUN
Chinese Pharmacological Bulletin 1986;0(04):-
Aim To determine TAT-tCNTF penetration ability and to investigate the effects of the fusion protein on SH-SY5Y cells against toxicity induced by ?-amyloid peptide 25-35(A?25-35 ).Methods The conjugate(TAT-tCNTF)of TAT(47-57)of HIV-1 and the truncated human CNTF active fragment was genetic engineered and expressed in E.Coli.Immunofluorescence was used to identify cell permeation ability across membrane.MTT assay was used to measure the survival of SH-SY5Y cells injured by A?25-35.And Hoechst 33342/PI double staining was used to observe the morphology of cell apoptosis and necrosis.LDH was measured by spectrophotometric method.Results The expression vector of pBV220-TAT-tCNTF was constructed successfully.Western blot showed the recombinant fusion protein could bind specifically with CNTF antibody.The immunofluorescence assay clearly demonstrated that TAT-tCNTF did penatrate into the cells while little rhCNTF pass across the cells.Double staining and LDH release assay demonstrated that TAT-tCNTF could promote significantly the survival of the cells.Conclusions TAT-tCNTF with high activities and effective transmembrane ability is obtained for the first time.The fusion protein protects SH-SY5Y cells from death after A?25-35 exposure.
2.Protective effects of TAT-tCNTF fusion protein on SH-SY5Y cells induced by β-amyloid peptide(25-35)
Hengyan QU ; Zeyuan LIU ; Yuanyuan LI ; Manji SUN
Chinese Pharmacological Bulletin 2010;26(4):442-446
Aim To determine TAT-Tcntf penetration ability and to investigate the effects of the fusion protein on SH-SY5Y cells against toxicity induced by β-amyloid peptide 25-35(Aβ_(25-35) ).Methods The conjugate(TAT-tCNTF)of TAT(47-57)of HIV-1 and the truncated human CNTF active fragment was genetic engineered and expressed in E.Coli.Immunofluorescence was used to identify cell permeation ability across membrane.MTT assay was used to measure the survival of SH-SY5Y cells injured by Aβ_(25-35).And Hoechst 33342/PI double staining was used to observe the morphology of cell apoptosis and necrosis.LDH was measured by spectrophotometric method.Results The expression vector of pBV220-TAT-tCNTF was constructed successfully.Western blot showed the recombinant fusion protein could bind specifically with CNTF antibody.The immunofluorescence assay clearly demonstrated that TAT-tCNTF did penatrate into the cells while little rhCNTF pass across the cells.Double staining and LDH release assay demonstrated that TAT-tCNTF could promote significantly the survival of the cells.Conclusion sTAT-tCNTF with high activities and effective transmembrane ability is obtained for the first time.The fusion protein protects SH-SY5Y cells from death after Aβ25-35 exposure.
3.Comparison of the inhibition potentials of icotinib and erlotinib against human UDP-glucuronosyltransferase 1A1.
Xuewei CHENG ; Xia LV ; Hengyan QU ; Dandan LI ; Mengmeng HU ; Wenzhi GUO ; Guangbo GE ; Ruihua DONG
Acta Pharmaceutica Sinica B 2017;7(6):657-664
UDP-glucuronosyltransferase 1A1 (UGT1A1) plays a key role in detoxification of many potentially harmful compounds and drugs. UGT1A1 inhibition may bring risks of drug-drug interactions (DDIs), hyperbilirubinemia and drug-induced liver injury. This study aimed to investigate and compare the inhibitory effects of icotinib and erlotinib against UGT1A1, as well as to evaluate their potential DDI risksUGT1A1 inhibition. The results demonstrated that both icotinib and erlotinib are UGT1A1 inhibitors, but the inhibitory effect of icotinib on UGT1A1 is weaker than that of erlotinib. The ICvalues of icotinib and erlotinib against UGT1A1-mediated NCHN--glucuronidation in human liver microsomes (HLMs) were 5.15 and 0.68 μmol/L, respectively. Inhibition kinetic analyses demonstrated that both icotinib and erlotinib were non-competitive inhibitors against UGT1A1-mediated glucuronidation of NCHN in HLMs, with thevalues of 8.55 and 1.23 μmol/L, respectively. Furthermore, their potential DDI risksUGT1A1 inhibition were quantitatively predicted by the ratio of the areas under the concentration-time curve (AUC) of NCHN. These findings are helpful for the medicinal chemists to design and develop next generation tyrosine kinase inhibitors with improved safety, as well as to guide reasonable applications of icotinib and erlotinib in clinic, especially for avoiding their potential DDI risksUGT1A1 inhibition.