1.Establishment of the fingerprints of Yinhuang solution for inhalation and content determination of phenolic acids
Jin GAO ; Cui LI ; Ruizhuo YIN ; Xincheng MA ; Huiyang WANG ; Chunhui GONG ; Chengyu CHEN ; Hui CAO
China Pharmacy 2022;33(2):160-164
OBJE CTIVE To establish the finger prints for Yinhuang solution for inhalation and determine the contents of neochlorogenic acid ,chlorogenic acid and cryptochlorogenic acid simultaneously. METHODS Using baicalin as reference ,the fingerprints of Yinhuang solution for inhalation were established by high performance liquid chromatography (HPLC). Relative correction factors of neochlorogenic acid and cryptochlorogenic acid were calculated by slope correction method ,using chlorogenic acid as reference ;the contents of them were calculated according to relative correction factor. The results of quantitative analysis of multi-components by single marker (QAMS)were compared with those of external standard method (ESM). RESULTS There were 18 common peaks in the fingerprints of 10 batches of Yinhuang solution for inhalation ,and their similarities with reference fingerprint were higher than 0.90. A total of 7 common peaks were identified as baicalin ,neochlorogenic acid ,chlorogenic acid , cryptochlorogenic acid ,isochlorogenic acid B ,3,5-di-O-caffeoylquinic acid and 4,5-di-O-caffeoylquinic acid. The linear range of neochlorogenic acid ,chlorogenic acid and cryptochlorogenic acid were 0.025 0-1.247 4 μg(r=0.999 7),0.039 3-1.178 7 μg(r= 0.999 9),0.031 6-1.184 1 μg(r=0.999 9),respectively. RSDs of precision ,reproducibility and stability tests (48 h)were all lower than 1.0%. The average recoveries were 93.92%(RSD=1.32% ,n=6),94.46%(RSD=1.45%,n=6),93.93%(RSD= 1.57%,n=6). Relative correction factors of neochlorogenic acid and cryptochlorogenic acid were 1.068 and 1.233. The contents of neochlorogenic acid and cryptochlorogenic acid determined by QAMS method were 0.301 8-0.386 3 and 0.262 5-0.362 5 mg/mL, respectively. The contents of neochlorogenic acid ,chlorogenic acid and cryptochlorogenic acid by ESM were 0.302 6-0.387 2, 0.231 0- 0.334 0,0.261 6-0.361 3 mg/mL,respectively. The deviations of the content determination results of the two methods(except for chlorogenic acid )were both not higher than 0.20%. CONCLUSIONS Established HPLC fingerprints are stable and feasible. Established QAMS method is accurate and rapid. HPLC fingerprint combined with QAMS can be used for the quality control for Yinhuang solution for inhalation .
2.Improvement on Quality Standard of Yuanhu Zhitong Oral Liquid
Lu FU ; Chengyu CHEN ; Jin GAO ; Dan WU ; Chun LI ; Zhiming CAO ; Jianli GUAN ; Ping WANG ; Haiyu XU
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(9):125-131
ObjectiveTo improve the quality standard of Yuanhu Zhitong oral liquid in order to strengthen the quality control of this oral liquid. MethodThin layer chromatography(TLC) was used for the qualitative identification of Corydalis Rhizoma and Angelicae Dahuricae Radix in Yuanhu Zhitong oral liquid by taking tetrahydropalmatine, corydaline reference substances and Corydalis Rhizoma reference medicinal materials as reference, and cyclohexane-trichloromethane-methanol(5∶3∶0.5) as developing solvent, Corydalis Rhizoma was identified using GF254 glass thin layer plate under ultraviolet light(365 nm). And taking petroleum ether(60-90 ℃) -ether-formic acid(10∶10∶1) as developing solvent, Angelicae Dahuricae Radix was identified using a silica gel G TLC plate under ultraviolet light(305 nm). High performance liquid chromatography(HPLC) was performed on a Waters XSelect HSS T3 column(4.6 mm×250 mm, 5 μm) with acetonitrile(A)-0.1% glacial acetic acid solution(adjusted pH to 6.1 by triethylamine)(B) as the mobile phase for gradient elution(0-10 min, 20%-30%A; 10-25 min, 30%-40%A; 25-40 min, 40%-50%A; 40-60 min, 50%-60%A), the detection wavelength was set at 280 nm, then the fingerprint of Yuanhu Zhitong oral liquid was established, and the contents of tetrahydropalmatine and corydaline were determined. ResultIn the thin layer chromatograms, the corresponding spots of Yuanhu Zhitong oral liquid, the reference substances and reference medicinal materials were clear, with good separation and strong specificity. A total of 12 common peaks were identified in 10 batches of Yuanhu Zhitong oral liquid samples, and the peaks of berberine hydrochloride, dehydrocorydaline, glaucine, tetrahydropalmatine and corydaline. The similarities between the 10 batches of samples and the control fingerprint were all >0.90. The results of determination showed that the concentrations of corydaline and tetrahydropalmatine had good linearity with paek area in the range of 0.038 6-0.193 0, 0.034 0-0.170 0 g·L-1, respectively. The methodological investigation was qualified, and the contents of corydaline and tetrahydropalmatine in 10 batches of Yuanhu Zhitong oral liquid samples were 0.077 5-0.142 9、0.126 1-0.178 2 g·L-1, respectively. ConclusionThe established TLC, fingerprint and determination are simple, specific and reproducible, which can be used to improve the quality control standard of Yuanhu Zhitong oral liquid.
3.Effect of extracellular vesicles and microRNAs in follicular fluid on follicular development.
Hengqin WANG ; Xiaomei WANG ; Kai MENG ; Xutong GONG ; Ying WANG ; Yong ZHANG ; Fusheng QUAN
Chinese Journal of Biotechnology 2020;36(4):632-642
Extracellular vesicles (EVs) refer to bilayer membrane transport vesicles secreted by cells. EVs can take macromolecules from cells and transfer them to receptor cells. Among these macromolecular substances, the most studied are microRNAs (miRNAs). miRNA is non-coding RNA involved in the regulation of gene expression. It has been confirmed that there are different non-coding RNAs in mammalian follicular fluid EVs. EVs carrying miRNA can act as an alternative mechanism for autocrine and paracrine, affecting follicular development. This paper systematically introduced the kinds, characteristics and methods of isolation and identification of EVs, focusing on the effects of EVs and miRNAs on follicular development, including early follicular development, oocyte maturation, follicular dominance and effects on granulosa cell function. At the same time, the authors prospected the future research of EVs and microRNAs in follicular fluid, and provided ideas and directions for the research and application of EVs and miRNA functions in follicular fluid.
Animals
;
Extracellular Vesicles
;
metabolism
;
Female
;
Follicular Fluid
;
chemistry
;
Granulosa Cells
;
drug effects
;
MicroRNAs
;
pharmacology
;
Oogenesis
;
drug effects