1.Biomarkers in pursuit of precision medicine for acute kidney injury: hard to get rid of customs
Kun-Mo LIN ; Ching-Chun SU ; Jui-Yi CHEN ; Szu-Yu PAN ; Min-Hsiang CHUANG ; Cheng-Jui LIN ; Chih-Jen WU ; Heng-Chih PAN ; Vin-Cent WU
Kidney Research and Clinical Practice 2024;43(4):393-405
Traditional acute kidney injury (AKI) classifications, which are centered around semi-anatomical lines, can no longer capture the complexity of AKI. By employing strategies to identify predictive and prognostic enrichment targets, experts could gain a deeper comprehension of AKI’s pathophysiology, allowing for the development of treatment-specific targets and enhancing individualized care. Subphenotyping, which is enriched with AKI biomarkers, holds insights into distinct risk profiles and tailored treatment strategies that redefine AKI and contribute to improved clinical management. The utilization of biomarkers such as N-acetyl-β-D-glucosaminidase, tissue inhibitor of metalloprotease-2·insulin-like growth factor-binding protein 7, kidney injury molecule-1, and liver fatty acid-binding protein garnered significant attention as a means to predict subclinical AKI. Novel biomarkers offer promise in predicting persistent AKI, with urinary motif chemokine ligand 14 displaying significant sensitivity and specificity. Furthermore, they serve as predictive markers for weaning patients from acute dialysis and offer valuable insights into distinct AKI subgroups. The proposed management of AKI, which is encapsulated in a structured flowchart, bridges the gap between research and clinical practice. It streamlines the utilization of biomarkers and subphenotyping, promising a future in which AKI is swiftly identified and managed with unprecedented precision. Incorporating kidney biomarkers into strategies for early AKI detection and the initiation of AKI care bundles has proven to be more effective than using care bundles without these novel biomarkers. This comprehensive approach represents a significant stride toward precision medicine, enabling the identification of high-risk subphenotypes in patients with AKI.
2.Abrupt Decline in Estimated Glomerular Filtration Rate after Initiating Sodium-Glucose Cotransporter 2 Inhibitors Predicts Clinical Outcomes: A Systematic Review and Meta-Analysis
Min-Hsiang CHUANG ; Yu-Shuo TANG ; Jui-Yi CHEN ; Heng-Chih PAN ; Hung-Wei LIAO ; Wen-Kai CHU ; Chung-Yi CHENG ; Vin-Cent WU ; Michael HEUNG
Diabetes & Metabolism Journal 2024;48(2):242-252
Background:
The initiation of sodium-glucose cotransporter-2 inhibitors (SGLT2i) typically leads to a reversible initial dip in estimated glomerular filtration rate (eGFR). The implications of this phenomenon on clinical outcomes are not well-defined.
Methods:
We searched MEDLINE, Embase, and Cochrane Library from inception to March 23, 2023 to identify randomized controlled trials and cohort studies comparing kidney and cardiovascular outcomes in patients with and without initial eGFR dip after initiating SGLT2i. Pooled estimates were calculated using random-effect meta-analysis.
Results:
We included seven studies in our analysis, which revealed that an initial eGFR dip following the initiation of SGLT2i was associated with less annual eGFR decline (mean difference, 0.64; 95% confidence interval [CI], 0.437 to 0.843) regardless of baseline eGFR. The risk of major adverse kidney events was similar between the non-dipping and dipping groups but reduced in patients with a ≤10% eGFR dip (hazard ratio [HR], 0.915; 95% CI, 0.865 to 0.967). No significant differences were observed in the composite of hospitalized heart failure and cardiovascular death (HR, 0.824; 95% CI, 0.633 to 1.074), hospitalized heart failure (HR, 1.059; 95% CI, 0.574 to 1.952), or all-cause mortality (HR, 0.83; 95% CI, 0.589 to 1.170). The risk of serious adverse events (AEs), discontinuation of SGLT2i due to AEs, kidney-related AEs, and volume depletion were similar between the two groups. Patients with >10% eGFR dip had increased risk of hyperkalemia compared to the non-dipping group.
Conclusion
Initial eGFR dip after initiating SGLT2i might be associated with less annual eGFR decline. There were no significant disparities in the risks of adverse cardiovascular outcomes between the dipping and non-dipping groups.
3.Abrupt Decline in Estimated Glomerular Filtration Rate after Initiating Sodium-Glucose Cotransporter 2 Inhibitors Predicts Clinical Outcomes: A Systematic Review and Meta-Analysis
Min-Hsiang CHUANG ; Yu-Shuo TANG ; Jui-Yi CHEN ; Heng-Chih PAN ; Hung-Wei LIAO ; Wen-Kai CHU ; Chung-Yi CHENG ; Vin-Cent WU ; Michael HEUNG
Diabetes & Metabolism Journal 2024;48(2):242-252
Background:
The initiation of sodium-glucose cotransporter-2 inhibitors (SGLT2i) typically leads to a reversible initial dip in estimated glomerular filtration rate (eGFR). The implications of this phenomenon on clinical outcomes are not well-defined.
Methods:
We searched MEDLINE, Embase, and Cochrane Library from inception to March 23, 2023 to identify randomized controlled trials and cohort studies comparing kidney and cardiovascular outcomes in patients with and without initial eGFR dip after initiating SGLT2i. Pooled estimates were calculated using random-effect meta-analysis.
Results:
We included seven studies in our analysis, which revealed that an initial eGFR dip following the initiation of SGLT2i was associated with less annual eGFR decline (mean difference, 0.64; 95% confidence interval [CI], 0.437 to 0.843) regardless of baseline eGFR. The risk of major adverse kidney events was similar between the non-dipping and dipping groups but reduced in patients with a ≤10% eGFR dip (hazard ratio [HR], 0.915; 95% CI, 0.865 to 0.967). No significant differences were observed in the composite of hospitalized heart failure and cardiovascular death (HR, 0.824; 95% CI, 0.633 to 1.074), hospitalized heart failure (HR, 1.059; 95% CI, 0.574 to 1.952), or all-cause mortality (HR, 0.83; 95% CI, 0.589 to 1.170). The risk of serious adverse events (AEs), discontinuation of SGLT2i due to AEs, kidney-related AEs, and volume depletion were similar between the two groups. Patients with >10% eGFR dip had increased risk of hyperkalemia compared to the non-dipping group.
Conclusion
Initial eGFR dip after initiating SGLT2i might be associated with less annual eGFR decline. There were no significant disparities in the risks of adverse cardiovascular outcomes between the dipping and non-dipping groups.
4.Abrupt Decline in Estimated Glomerular Filtration Rate after Initiating Sodium-Glucose Cotransporter 2 Inhibitors Predicts Clinical Outcomes: A Systematic Review and Meta-Analysis
Min-Hsiang CHUANG ; Yu-Shuo TANG ; Jui-Yi CHEN ; Heng-Chih PAN ; Hung-Wei LIAO ; Wen-Kai CHU ; Chung-Yi CHENG ; Vin-Cent WU ; Michael HEUNG
Diabetes & Metabolism Journal 2024;48(2):242-252
Background:
The initiation of sodium-glucose cotransporter-2 inhibitors (SGLT2i) typically leads to a reversible initial dip in estimated glomerular filtration rate (eGFR). The implications of this phenomenon on clinical outcomes are not well-defined.
Methods:
We searched MEDLINE, Embase, and Cochrane Library from inception to March 23, 2023 to identify randomized controlled trials and cohort studies comparing kidney and cardiovascular outcomes in patients with and without initial eGFR dip after initiating SGLT2i. Pooled estimates were calculated using random-effect meta-analysis.
Results:
We included seven studies in our analysis, which revealed that an initial eGFR dip following the initiation of SGLT2i was associated with less annual eGFR decline (mean difference, 0.64; 95% confidence interval [CI], 0.437 to 0.843) regardless of baseline eGFR. The risk of major adverse kidney events was similar between the non-dipping and dipping groups but reduced in patients with a ≤10% eGFR dip (hazard ratio [HR], 0.915; 95% CI, 0.865 to 0.967). No significant differences were observed in the composite of hospitalized heart failure and cardiovascular death (HR, 0.824; 95% CI, 0.633 to 1.074), hospitalized heart failure (HR, 1.059; 95% CI, 0.574 to 1.952), or all-cause mortality (HR, 0.83; 95% CI, 0.589 to 1.170). The risk of serious adverse events (AEs), discontinuation of SGLT2i due to AEs, kidney-related AEs, and volume depletion were similar between the two groups. Patients with >10% eGFR dip had increased risk of hyperkalemia compared to the non-dipping group.
Conclusion
Initial eGFR dip after initiating SGLT2i might be associated with less annual eGFR decline. There were no significant disparities in the risks of adverse cardiovascular outcomes between the dipping and non-dipping groups.