1.Progress in biochemical characteristics of hemopexin and its clinical application.
Bei-Bei DONG ; Fang-Yun ZHU ; Hai-Dong WEI ; Hai-Long DONG ; Li-Ze XIONG
Journal of Experimental Hematology 2013;21(2):513-516
Hemopexin (HPX) is a plasma protein with the strongest binding capacity to heme and widely involved in modulation of a variety of physiological and pathological processes. The main physiological function of HPX is to bind and transport free toxic heme. Recent studies indicate that HPX also plays roles of anti-oxidant, anti-apoptosis, immune regulation and organic protection. In addition, HPX participates in regulation of cell differentiation and extracellular matrix reconstruction. In recent years, a great deal of progress has been made in studies of the mechanisms of HPX protective effects and on possible clinical application. In the past few years, especially, a number of proteomic studies have demonstrated that HPX could be served as positive molecular biomarkers for cancers of lung, liver, kidney, colon, and uterine myoma as well as osteoarthritis. In this review, recent progress in the biochemical characteristics and function of HPX and its possible clinical applications are summarized.
Heme
;
Heme Oxygenase (Decyclizing)
;
Hemopexin
;
chemistry
;
metabolism
;
Humans
2.Hemin inhibits lipid peroxidation induced by ascorbate/FeSO4 and 2,2'-azobis-2-amidino-propane hydrochloride (ABAP).
Young Do JUNG ; Kee Oh CHAY ; Dong Up SONG ; Jung Sik MOON ; Sung Yeul YANG ; Min Wha LEE ; Bong Whan AHN
Experimental & Molecular Medicine 1997;29(3):171-175
Hemin blocked lipid peroxidations induced by either ascorbate/FeSO4, a metal-catalyzed oxidation system, or 2,2'-azobis-2-amidino-propane hydrochloride (ABAP) which produces peroxy radicals at constant rates. Hemin at very low micromolar concentrations strongly inhibited the ascorbate/FeSO4-induced peroxidation of rat liver phopholipids, soybean phosphatidylcholine and arachidonic acid, and this inhibition was also evident with the use of ABAP, although much higher concentrations of hemin were required than those for the inhibition of ascorbate/FeSO4-induced lipid peroxidation. However, hemoproteins such as hemoglobin, myoglobin and cytochrome C did not show any significant effect on this lipid peroxidation. Hemopexin and albumin abolished the inhibitory action of hemin. During incubation with ascorbate/FeSO4 or ABAP, hemin underwent a change in its absorption spectrum, resulting in a progressive decrease in the peak height of the characteristic absorption band at 385 nm. The above results suggest that hemin may act as an important antioxidant in vivo, protecting lipids from the peroxidative damage.
Absorption
;
Animals
;
Arachidonic Acid
;
Cytochromes c
;
Hemin*
;
Hemopexin
;
Lipid Peroxidation*
;
Liver
;
Myoglobin
;
Phosphatidylcholines
;
Rats
;
Soybeans
3.Pathogenesis of Minimal Change Nephrotic Syndrome: A Review of the Underlying Molecular Mechanisms
Childhood Kidney Diseases 2019;23(1):1-6
Nephrotic syndrome (NS) is the most common glomerular disorder in childhood, and a vast majority of cases are idiopathic. The precise cause of this common childhood disease is not fully elucidated despite significant advancements in our understanding of podocyte biology. Idiopathic NS has been considered “a disorder of T-cell function” mediated by a circulating factor that alters podocyte function resulting in massive proteinuria since the last four decades. Several circulatory factors released from T-cells are considered to be involved in pathophysiology of NS; however, a single presumptive factor has not been defined yet. Extended evidence obtained by advances in the pathobiology of podocytes has implicated podocytes as critical regulator of glomerular protein filtration and podocytopathy. The candidate molecules as pathological mediators of steroid-dependent NS are CD80 (also known as B7-1), hemopexin, and angiopoietin-like 4. The “two-hit” hypothesis proposes that the expression of CD80 on podocytes and ineffective inhibition of podocyte CD80 due to regulatory T-cell dysfunction or impaired autoregulation by podocytes results in NS. Recent studies suggest that not only T cells but also other immune cells and podocytes are involved in the pathogenesis of MCNS.
Biology
;
Filtration
;
Hemopexin
;
Homeostasis
;
Nephrosis, Lipoid
;
Nephrotic Syndrome
;
Pathology
;
Podocytes
;
Proteinuria
;
T-Lymphocytes