1.The role of endogenous carbon monoxide in vascular remodeling in hypoxic pulmonary hypertension.
Guo-hua ZHEN ; Zhen-xiang ZHANG ; Yong-jian XU
Chinese Journal of Applied Physiology 2002;18(4):374-377
AIMTo investigate the expression of heme oxygenase-1 gene and production of endogenous carbon monoxide in the rat lung tissue at different time points of chronic hypoxic pulmonary hypertension and the effect of hemin, an inducer of heme oxygenase, on the expression of HO-1 gene and production of endogenous carbon monoxide and pulmonary hypertension.
METHODSWe recreated a rat model of hypoxic pulmonary hypertension by intermittent normal pressure hypoxia (10% O2). The following assays were carried out: Reverse transcriptase polymerase chain reaction (RT-PCR) were performed to determine the level of HO-1 mRNA in rat lung tissue, double wave length spectrophotometry was used to evaluate the quantity of COHb in arterial blood, cardiac catheterization was used to measure the right ventricular systolic pressure (RVSP) and HE staining was performed in dissected lung tissue to observe the pathologic changes of the intra-acinar pulmonary arteries(IAPA).
RESULTS(DT here was low level of HO-1 mRNA in normal rat lung tissue, but the level of HO-1 mRNA increased by 2-4 times in the lung tissue of hypoxic rats (P < 0.01). The quantity of COHb was 2-3 times as those of control group (P < 0.01 or P < 0.05). These were accompanied by the increase of RVSP and the thickness of IAPA. (2) Hemin could maintain the HO-1 mRNA and COHb in the hypoxic rat lung tissue at a high level, and partially suppressed the increase of rat RVSP, ameliorated the pathologic changes of IAPA.
CONCLUSIONThe upregulation of the expression of HO-1 gene and production of CO in the rat lung of hypoxic pulmonary hypertension plays a role of inhibition in the development of hypoxic pulmonary hypertension. Hemin has a therapeutic effect on hypoxic pulmonary hypertension.
Animals ; Carbon Monoxide ; metabolism ; Heme Oxygenase (Decyclizing) ; metabolism ; Hemin ; pharmacology ; Hypertension, Pulmonary ; metabolism ; pathology ; physiopathology ; Hypoxia ; metabolism ; pathology ; Male ; Pulmonary Artery ; metabolism ; physiopathology ; Rats ; Rats, Wistar
2.Protective role of endogenous carbon monoxide to lung and kidney tissues during septic shock.
Jia-Qing TAN ; Chun-Hua DING ; Xiao-Hua SUO ; Yi-Ling LING ; Xiao-Rao LIU ; Jun-Yi ZHANG
Chinese Journal of Applied Physiology 2007;23(1):92-96
AIMTo study the protective role of endogenous carbon monoxide to lung and kidney tissues during septic shock and its mechanism.
METHODSA rat model of CLP was built by using the method of CLP. The malondialdehyde (MDA) content and the activity of superoxide dematase (SOD) in blood, lung and kidney were detected by immunohistochemical technique and light microscope.
RESULTSPathological changes of lung and kidney in CLP + Hemin group were lighter than CLP group, inflammatory reaction and lipid peroxidation were also lighter.
CONCLUSIONEndogenous CO can protect lung and kidney from the oxidative injury. It can suppress in flammation and the oxidative injury caused by activated inflammatory cells, it is probably an important mechanism of its protective effects.
Animals ; Carbon Monoxide ; physiology ; Hemin ; pharmacology ; Kidney ; metabolism ; pathology ; Lipid Peroxidation ; Lung ; metabolism ; pathology ; Male ; Malondialdehyde ; analysis ; Rats ; Rats, Sprague-Dawley ; Shock, Septic ; metabolism ; pathology ; Superoxide Dismutase ; metabolism
3.Protection effect and mechanism of hemin against ischemia/reperfusion injury in rat hearts.
Xiao-Ming CHEN ; Bi-E TANG ; Wei-Ming SUN ; Yang WANG
Chinese Journal of Applied Physiology 2014;30(1):70-73
OBJECTIVETo investigate whether the cardioprotective effect of hemin against ischemia/reperfusion (I/R) injury is through the inhibition of calpain activity, and to explore its underlying mechanism.
METHODSSixty-four SD rats were randomly divided into eight groups (n = 8): sham, I/R, MDL+ I/R, MDL, hemin + I/R, hemin, and ZnPP + hemin+ I/R, ZnPP. Iangendorff isolated rat heart perfusion model was used. The rat hearts were suffered from 40 min of ischemia followed by 30 min of reperfusion. After that, left ventricular developed pressure (LVDP) was recorded. Infarct size and release of lactate dehydrogenase (LDH) were measured. Calpain, heme oxygenase (HO), and caspase 3 activities were evaluated. Expression of calpastatin protein was detected by Western blot.
RESULTS(1) After suffered from ischemia/reperfusion, the calpain activity and caspase 3 activity increased. MDL28170, an inhibitor of calpain, prevented ischemia/reperfusion induced increases in LDH and infarct size, improved the LVDP recovery. (2) Compared with ischema/reperfusion rat hearts, pretreatment of hemin enhanced the HO-1 activity, decreased the calpain and caspase 3 activities, declined LDH release and infarct size, and improved LVDP recovery. (3) Ischemia/reperfusion reduced the expression of calpastatin protein in rat hearts, which was inhibited by hemin pretreatment. And HO-1 inhibitor could abolish the cardioprotection of hemin.
CONCLUSIONCardioprotective effect of hemin against ischemia/reperfusion injury is through the inhibition of calpain activity, the mechanism might be involved in the increase in calpastatin protein expression.
Animals ; Calpain ; metabolism ; Cardiotonic Agents ; pharmacology ; Caspase 3 ; metabolism ; Heme Oxygenase-1 ; metabolism ; Hemin ; pharmacology ; L-Lactate Dehydrogenase ; metabolism ; Myocardial Reperfusion Injury ; drug therapy ; Rats ; Rats, Sprague-Dawley
4.Identification and analysis of expressed sequence tags related to K562 cells into erythroid differentiation.
Jia YU ; Jun-wu ZHANG ; Han PENG ; Deng CHEN
Acta Academiae Medicinae Sinicae 2004;26(2):150-154
OBJECTIVETo isolate expressed sequence tags (ESTs) related to K562 cells erythroid differentiation.
METHODSModified differential display reverse transcription polymerase chain reaction (DDRT-PCR) method was applied to identify differential ESTs in uninduced and induced K562 cells by HEMIN for 36 hours. Remarkable differential ESTs were firstly selected for cloning, sequencing and bioinformational analyzing. Several ESTs representing new sequence or providing functional clue were selected for Northern blot analysis.
RESULTSSixty differentially expressed cDNA fragments related to K562 cells inducted into erythroid differentiation by HEMIN were obtained. Among them, 38 were upregulated and 22 downregulated. Among the 40 differential ESTs selected for cloning, sequencing and bioinformationally analyzing, 23 were found to match to known GenBank sequences and 10 represented cDNA sequences with only dbEST database matches and 7 ESTs have no any database matches. The results of 6 in 8 ESTs selected for Northern blot analysis were shown to be consistent with the differential expressions of DDRT-PCR.
CONCLUSIONSThe improved DDRT-PCR method had successfully overcome the problem of false positive. These ESTs provide some clue for studying the molecular mechanisms and regulation network of erythroid differentiation.
Cell Differentiation ; drug effects ; Cell Transformation, Neoplastic ; drug effects ; Erythroid Cells ; cytology ; Expressed Sequence Tags ; Hemin ; pharmacology ; Humans ; K562 Cells ; cytology ; metabolism ; Sequence Tagged Sites
5.The role of ROS in hydroquinone-induced inhibition of K562 cell erythroid differentiation.
Chun Hong YU ; Suriguga ; Yang LI ; Yi Ran LI ; Ke Ya TANG ; Liang JIANG ; Zong Chun YI
Biomedical and Environmental Sciences 2014;27(3):212-214
The role of ROS in hydroquinone-induced inhibition of K562 cell erythroid differentiation was investigated. After K562 cells were treated with hydroquinone for 24 h, and hemin was later added to induce erythroid differentiation for 48 h, hydroquinone inhibited hemin-induced hemoglobin synthesis and mRNA expression of γ-globin in K562 cells in a concentration-dependent manner. The 24-h exposure to hydroquinone also caused a concentration-dependent increase at an intracellular ROS level, while the presence of N- acetyl-L-cysteine prevented hydroquinone- induced ROS production in K562 cells. The presence of N-acetyl-L-cysteine also prevented hydroquinone inhibiting hemin-induced hemoglobin synthesis and mRNA expression of γ-globin in K562 cells. These evidences indicated that ROS production played a role in hydroquinone-induced inhibition of erythroid differentiation.
Acetylcysteine
;
pharmacology
;
Cell Differentiation
;
drug effects
;
Dose-Response Relationship, Drug
;
Hemin
;
pharmacology
;
Humans
;
Hydroquinones
;
pharmacology
;
K562 Cells
;
drug effects
;
Reactive Oxygen Species
;
metabolism
;
gamma-Globins
;
genetics
6.Inhibition of Erythroid Differentiation of Human Leukemia K562 Cells by N-acetylcysteine and Ascorbic Acid through Downregulation of ROS.
Chun Hong YU ; Liang JIANG ; Ying WANG ; Ning Xuan CUI ; Xiao ZHAO ; Zong Chun YI
Biomedical and Environmental Sciences 2018;31(3):247-251
This study investigated the effects of N-acetylcysteine (NAC) and ascorbic acid (AA) on hemin-induced K562 cell erythroid differentiation and the role of reactive oxygen species (ROS) in this process. Hemin increased ROS levels in a concentration-dependent manner, whereas NAC and AA had opposite effects. Both NAC and AA eliminated transient increased ROS levels after hemin treatment, inhibited hemin-induced hemoglobin synthesis, and decreased mRNA expression levels of β-globin, γ-globin, and GATA-1 genes significantly. Pretreatment with 5,000 μmol/L AA for 2 h resulted in a considerably lower inhibition ratio of hemoglobin synthesis than that when pretreated for 24 h, whereas the ROS levels were the lowest when treated with 5,000 μmol/L AA for 2 h. These results show that NAC and AA might inhibit hemin-induced K562 cell erythroid differentiation by downregulating ROS levels.
Acetylcysteine
;
pharmacology
;
Antioxidants
;
pharmacology
;
Ascorbic Acid
;
pharmacology
;
Cell Differentiation
;
drug effects
;
Down-Regulation
;
Erythroid Cells
;
drug effects
;
Hemin
;
pharmacology
;
Humans
;
K562 Cells
;
Reactive Oxygen Species
;
metabolism
7.Effect of simulated microgravity on erythroid differentiation of K562 cells and the mechanism.
Bin WU ; Lei ZHENG ; Xiu-Mei HU ; Ya GAO ; Chun-Yan YUE ; Jia-Qiong HONG ; Jie SONG ; Bao-Hong PING
Journal of Southern Medical University 2015;35(10):1422-1427
OBJECTIVETo investigate the effect of simulated microgravity on erythroid differentiation of K562 cells and explore the possible mechanism.
METHODSThe fourth generation rotating cell culture system was used to generate the simulated microgravity environment. Benzidine staining was used to evaluate the cell inhibition rate, and real-time quantitative PCR (qRT-PCR) was used to detect GATA-1, GATA-2, Ets-1, F-actin, β-Tubulin and vimentin mRNA expressions. The changes of cytoskeleton were observed by fluorescence microscopy, and Western blotting was employed to assay F-actin, β-tubulin and vimentin protein expression levels.
RESULTSBenzidine staining showed that simulated microgravity inhibited erythroid differentiation of K562 cells. K562 cells treated with Hemin presented with increased mRNA expression of GATA-1 and reduced GATA-2 and Ets-1 mRNA expressions. Simulated microgravity treatment of the cells resulted in down-regulated GATA-1, F-actin, β-tubulin and vimentin mRNA expressions and up-regulated mRNA expressions of GATA-2 and Ets-1, and reduced F-actin, β-tubulin and vimentin protein expressions. Exposure to simulated microgravity caused decreased fluorescence intensities of cytoskeletal filament F-actin, β-tubulin and vimentin in the cells.
CONCLUSIONSimulated microgravity inhibits erythroid differentiation of K562 cells possibly by causing cytoskeleton damages to result in down-regulation of GATA-1 and up-regulation of GATA-2 and Ets-1 expressions.
Actins ; metabolism ; Cell Differentiation ; Down-Regulation ; GATA1 Transcription Factor ; metabolism ; GATA2 Transcription Factor ; metabolism ; Hemin ; pharmacology ; Humans ; K562 Cells ; Proto-Oncogene Protein c-ets-1 ; metabolism ; Tubulin ; metabolism ; Up-Regulation ; Vimentin ; metabolism ; Weightlessness Simulation
8.A Protective Role for Heme Oxygenase-1 in INS-1 Cells and Rat Islets that are Exposed to High Glucose Conditions.
Kyu Chang WON ; Jun Sung MOON ; Mi Jung EUN ; Ji Sung YOON ; Kyung Ah CHUN ; Ihn Ho CHO ; Yong Woon KIM ; Hyoung Woo LEE
Journal of Korean Medical Science 2006;21(3):418-424
Heme oxygenase-1 (HO-1) has been described as an inducible protein that is capable of cytoprotection via radical scavenging and the prevention of apoptosis. Chronic exposure to hyperglycemia can lead to cellular dysfunction that may become irreversible over time, and this process has been termed glucose toxicity. Yet little is known about the relation between glucose toxicity and HO-1 in the islets. The purposes of the present study were to determine whether prolonged exposure of pancreatic islets to a supraphysiologic glucose concentration disrupts the intracellular balance between reactive oxygen species (ROS) and HO-1, and so this causes defective insulin secretion; we also wanted to evaluate a protective role for HO-1 in pancreatic islets against high glucose levels. The intracellular peroxide levels of the pancreatic islets (INS-1 cell, rat islet) were increased in the high glucose media (30 mM glucose or 50 mM ribose). The HO-1 expression was induced in the INS-1 cells by the high glucose levels. Both the HO-1 expression and glucose stimulated insulin secretion (GSIS) was decreased simultaneously in the islets by treatment of the HO-1 antisense. The HO-1 was upregulated in the INS-1 cells by hemin, an inducer of HO-1. And, HO-1 upregulation induced by hemin reversed the GSIS in the islets at a high glucose condition. These results suggest HO-1 seems to mediate the protective response of pancreatic islets against the oxidative stress that is due to high glucose conditions.
Reactive Oxygen Species
;
Rats, Wistar
;
Rats
;
Peroxides/metabolism
;
Oxidative Stress
;
Male
;
Islets of Langerhans/*metabolism
;
Insulin/secretion
;
Hemin/metabolism
;
Heme Oxygenase-1/metabolism/*physiology
;
Glucose/metabolism/*pharmacology
;
*Gene Expression Regulation
;
Flow Cytometry
;
Animals
9.Cardioprotective effects of NOS and PKC under hemin induced ischemia/reperfusion injury in rat hearts.
He-jing XU ; Ping-ping LV ; Li ZHU ; Yang WANG ; Yue-liang SHEN ; Ying-ying CHEN
Chinese Journal of Applied Physiology 2007;23(2):180-183
AIMWhether hemin, a heme oxygenase 1 (HO-1) inducer, reduces ischemia/reperfusion injury and whether NO synthase (NOS) and PKC are involved in the cardioprotective effects were investigated in the present study.
METHODSThe Langendorff model of isolated rat heart was used. The ventricular function, infarct size, LDH and CK during ischemia/reperfusion period were also observed.
RESULTS(1) After intraperitoneal injection of hemin (50 mg/kg) for 24 h, COHb concentration in rat blood enhanced. He-min preconditioning prevented the increase in LVEDP, decrease in LVDP and +/- dP/dt(max) in the isolated ischemia/reperfusion (ischemia for 30 main and subsequent reperfusion for 2 h) rat hearts. The leakage of LDH and CK in the coronary effluent was significantly declined in hemin-treated rat hearts. And the infarct size was als reduced. (2) By using an inhibitor of NOS NG-nitro-L-arginine methyl ester before the administration of hemin could inhibit the protection induced by hemin. (3) Administration of an inhibitor of protein kinase C chelerythrine (1 mg/kg) before hemin preconditioning could also abolish the cardioprotection induced by hemin.
CONCLUSIONThese data suggest that the involvement of NO synthase and protein kinase C have been implicated in hemin-induced delayed cardioprotection in isolated rat hearts.
Animals ; Heme Oxygenase-1 ; metabolism ; Hemin ; pharmacology ; Male ; Myocardial Reperfusion Injury ; metabolism ; NG-Nitroarginine Methyl Ester ; pharmacology ; Nitric Oxide Synthase ; metabolism ; Protein Kinase C ; metabolism ; Rats ; Rats, Sprague-Dawley
10.Effect of exogenous carbon monoxide donor hematin on seed germination and physiological characteristics of Cassia obtusifolia seedlings under NaCl stress.
Chunping ZHANG ; Ping HE ; Haiying LIU ; Fenggang YUAN ; Pinxiang WEI ; Yingzan XIE ; Shijun HU
China Journal of Chinese Materia Medica 2012;37(2):189-197
OBJECTIVEIn order to get the method to improve the salt resistance of seeds and seedlings for Cassia obtusbifolia under NaCl stress, seed germination and physiological characteristics of C. obtusifolia seedlings were studied.
METHODSeveral physiological indexes of C. obtusifolia seeds treated with exogenous carbon monoxide donor hematin under NaCl stress like the germination vigor, germination rate, germination index and vigor index were measured. And other indexes like the relative water content, the contents of photosynthetic pigment, chlorophyll fluorescence parameters, the contents of soluble sugar, protein and proline, malondialdehyde (MDA), the activities of superoxide (SOD), peroxidase (POD) and catalase (CAT) were also measured.
RESULTThe germination indexes of C. obtusifolia seeds under NaCl stress had been inhibited obviously. But after the treatment of hematin, every germination indexes were all increased. The result showed that the treatment of exogenous CO donor hematin obviously improved the germination vigor, germination rate, germination index and vigor index, increased the content of chlorophyll a, chlorophyll b, total chlorophyll, improved the photochemical efficiency of photosystem II (Fv/Fm), photochemical efficiency (Fv'/Fm'), PS II actual photochemical efficiency (phiPS II), photochemical quench coefficient (qP), decreased non-photochemical quenching coefficient (NPQ) and the content of malondialdehyde (MDA) , increased the relative water content of leaves and the content of soluble surge, protein and proline. Meanwhile, the results also indicated that CO improved the activities of superoxide (SOD), peroxidase (POD) and catalase (CAT). The effects of CO could be reversed when CO scavenger Hb is added.
CONCLUSIONExogenous CO donor hematin with appropriate concentration could significantly alleviate the damages to the seeds and seedlings of C. obtusifolia under NaCl stress and promote the salt resistance of the seeds and seedlings through improving the germination indexes, the photochemical efficiency and the antioxidase activities of the seedlings.
Carbohydrates ; analysis ; Carbon Monoxide ; metabolism ; Cassia ; drug effects ; growth & development ; metabolism ; Catalase ; metabolism ; Chlorophyll ; metabolism ; Germination ; drug effects ; physiology ; Hemin ; metabolism ; pharmacology ; Malondialdehyde ; metabolism ; Peroxidase ; metabolism ; Photosystem II Protein Complex ; metabolism ; Plant Proteins ; metabolism ; Proline ; metabolism ; Seedlings ; drug effects ; growth & development ; metabolism ; Seeds ; growth & development ; Sodium Chloride ; pharmacology ; Superoxide Dismutase ; metabolism ; Time Factors ; Water ; metabolism