1.Progress in biochemical characteristics of hemopexin and its clinical application.
Bei-Bei DONG ; Fang-Yun ZHU ; Hai-Dong WEI ; Hai-Long DONG ; Li-Ze XIONG
Journal of Experimental Hematology 2013;21(2):513-516
Hemopexin (HPX) is a plasma protein with the strongest binding capacity to heme and widely involved in modulation of a variety of physiological and pathological processes. The main physiological function of HPX is to bind and transport free toxic heme. Recent studies indicate that HPX also plays roles of anti-oxidant, anti-apoptosis, immune regulation and organic protection. In addition, HPX participates in regulation of cell differentiation and extracellular matrix reconstruction. In recent years, a great deal of progress has been made in studies of the mechanisms of HPX protective effects and on possible clinical application. In the past few years, especially, a number of proteomic studies have demonstrated that HPX could be served as positive molecular biomarkers for cancers of lung, liver, kidney, colon, and uterine myoma as well as osteoarthritis. In this review, recent progress in the biochemical characteristics and function of HPX and its possible clinical applications are summarized.
Heme
;
Heme Oxygenase (Decyclizing)
;
Hemopexin
;
chemistry
;
metabolism
;
Humans
2.Heme Oxygenase-1: Its Therapeutic Roles in Inflammatory Diseases.
Immune Network 2009;9(1):12-19
Heme oxygenase (HO)-1 is an inducible enzyme that catalyzes the first and rate-limiting step in the oxidative degradation of free heme into ferrous iron, carbon monoxide (CO), and biliverdin (BV), the latter being subsequently converted into bilirubin (BR). HO-1, once expressed during inflammation, forms high concentrations of its enzymatic by-products that can influence various biological events, and this expression is proven to be associated with the resolution of inflammation. The degradation of heme by HO-1 itself, the signaling actions of CO, the antioxidant properties of BV/BR, and the sequestration of ferrous iron by ferritin all concertedly contribute to the anti-inflammatory effects of HO-1. This review focuses on the anti-inflammatory mechanisms of HO-1 actions and its roles in inflammatory diseases.
Bilirubin
;
Biliverdine
;
Carbon Monoxide
;
Ferritins
;
Heme
;
Heme Oxygenase (Decyclizing)
;
Heme Oxygenase-1
;
Inflammation
;
Iron
3.Heme Oxygenase-1: Its Therapeutic Roles in Inflammatory Diseases.
Immune Network 2009;9(1):12-19
Heme oxygenase (HO)-1 is an inducible enzyme that catalyzes the first and rate-limiting step in the oxidative degradation of free heme into ferrous iron, carbon monoxide (CO), and biliverdin (BV), the latter being subsequently converted into bilirubin (BR). HO-1, once expressed during inflammation, forms high concentrations of its enzymatic by-products that can influence various biological events, and this expression is proven to be associated with the resolution of inflammation. The degradation of heme by HO-1 itself, the signaling actions of CO, the antioxidant properties of BV/BR, and the sequestration of ferrous iron by ferritin all concertedly contribute to the anti-inflammatory effects of HO-1. This review focuses on the anti-inflammatory mechanisms of HO-1 actions and its roles in inflammatory diseases.
Bilirubin
;
Biliverdine
;
Carbon Monoxide
;
Ferritins
;
Heme
;
Heme Oxygenase (Decyclizing)
;
Heme Oxygenase-1
;
Inflammation
;
Iron
4.Expression of HO-1 in chronic renal insufficiency. Rat kidney and implication.
Xiaocheng LIU ; Cheng YANG ; Xiaofeng HE
Journal of Huazhong University of Science and Technology (Medical Sciences) 2003;23(3):271-274
The expression, activity and clinical implication of heme oxygenase-1 (HO-1) in the chronic renal insufficiency (CRI) rat kidney and its mechanism were investigated. The 5/6 nephrectomized rats were assigned to sham operation group, CRI group and Hemin group. At the 8th week after second operation, blood pressure, urinary protein, serum creatinine (Scr) and BUN were measured. Renal pathologic changes were observed. The activity of HO and contents of erythropoietin (EPO) in serum and renal tissue were determined. Immunohistochemistry was used to detect the expression and distribution of HO-1 in the CRI rat kidney. As compared with CRI group, the urinary protein, blood pressure, Scr and BUN in Hemin group were reduced significantly (P < 0.05). The glomerular mesangial proliferation, inflammatory cellular infiltration of renal interstitium and interstitial fibrosis were ameliorated significantly. Immunohistochemistry and measurement of HO-1 activity revealed that the expression and activity of HO-1 was decreased in renal tissues and increased in serum in CRI group as compared with normal rats. HO-1 distributed mainly in tubular epithelial cells. The EPO contents in Hemin group were significantly higher than in CRI group. Through up-regulating the EPO level in serum and renal tissues, HO-1 retards the progression of CRI.
Animals
;
Erythropoietin
;
metabolism
;
Heme Oxygenase (Decyclizing)
;
metabolism
;
Heme Oxygenase-1
;
Hemin
;
pharmacology
;
Kidney
;
drug effects
;
enzymology
;
pathology
;
Kidney Failure, Chronic
;
enzymology
;
Male
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Up-Regulation
5.Protective Effects of Inducible HO-1 on Oxygen Toxicity in Rat Brain Endothelial Microvessel Cells.
Seung Jun YOO ; Neal K NAKRA ; Gabriele V RONNETT ; Cheil MOON
Endocrinology and Metabolism 2014;29(3):356-362
BACKGROUND: Reperfusion in ischemia is believed to generate cytotoxic oxidative stress, which mediates reperfusion injury. These stress conditions can initiate lipid peroxidation and damage to proteins, as well as promote DNA strand breaks. As biliverdin and bilirubin produced by heme oxygenase isoform 1 (HO-1) have antioxidant properties, the production of both antioxidants by HO-1 may help increase the resistance of the ischemic brain to oxidative stress. In the present study, the survival effect of HO-1 was confirmed using hemin. METHODS: To confirm the roles of HO-1, carbon monoxide, and cyclic guanosine monophosphate further in the antioxidant effect of HO-1 and bilirubin, cells were treated with cycloheximide, desferoxamine, and zinc deuteroporphyrin IX 2,4 bis glycol, respectively. RESULTS: HO-1 itself acted as an antioxidant. Furthermore, iron, rather than carbon monoxide, was involved in the HO-1-mediated survival effect. HO-1 activity was also important in providing bilirubin as an antioxidant. CONCLUSION: Our results suggested that HO-1 helped to increase the resistance of the ischemic brain to oxidative stress.
Animals
;
Antioxidants
;
Bilirubin
;
Biliverdine
;
Brain*
;
Carbon Monoxide
;
Cycloheximide
;
DNA
;
Guanosine Monophosphate
;
Heme
;
Heme Oxygenase (Decyclizing)
;
Hemin
;
Iron
;
Ischemia
;
Lipid Peroxidation
;
Microvessels*
;
Oxidative Stress
;
Oxygen*
;
Oxygenases
;
Rats*
;
Reperfusion
;
Reperfusion Injury
;
Zinc
6.The role of endogenous carbon monoxide in vascular remodeling in hypoxic pulmonary hypertension.
Guo-hua ZHEN ; Zhen-xiang ZHANG ; Yong-jian XU
Chinese Journal of Applied Physiology 2002;18(4):374-377
AIMTo investigate the expression of heme oxygenase-1 gene and production of endogenous carbon monoxide in the rat lung tissue at different time points of chronic hypoxic pulmonary hypertension and the effect of hemin, an inducer of heme oxygenase, on the expression of HO-1 gene and production of endogenous carbon monoxide and pulmonary hypertension.
METHODSWe recreated a rat model of hypoxic pulmonary hypertension by intermittent normal pressure hypoxia (10% O2). The following assays were carried out: Reverse transcriptase polymerase chain reaction (RT-PCR) were performed to determine the level of HO-1 mRNA in rat lung tissue, double wave length spectrophotometry was used to evaluate the quantity of COHb in arterial blood, cardiac catheterization was used to measure the right ventricular systolic pressure (RVSP) and HE staining was performed in dissected lung tissue to observe the pathologic changes of the intra-acinar pulmonary arteries(IAPA).
RESULTS(DT here was low level of HO-1 mRNA in normal rat lung tissue, but the level of HO-1 mRNA increased by 2-4 times in the lung tissue of hypoxic rats (P < 0.01). The quantity of COHb was 2-3 times as those of control group (P < 0.01 or P < 0.05). These were accompanied by the increase of RVSP and the thickness of IAPA. (2) Hemin could maintain the HO-1 mRNA and COHb in the hypoxic rat lung tissue at a high level, and partially suppressed the increase of rat RVSP, ameliorated the pathologic changes of IAPA.
CONCLUSIONThe upregulation of the expression of HO-1 gene and production of CO in the rat lung of hypoxic pulmonary hypertension plays a role of inhibition in the development of hypoxic pulmonary hypertension. Hemin has a therapeutic effect on hypoxic pulmonary hypertension.
Animals ; Carbon Monoxide ; metabolism ; Heme Oxygenase (Decyclizing) ; metabolism ; Hemin ; pharmacology ; Hypertension, Pulmonary ; metabolism ; pathology ; physiopathology ; Hypoxia ; metabolism ; pathology ; Male ; Pulmonary Artery ; metabolism ; physiopathology ; Rats ; Rats, Wistar
7.Protection effect and mechanism of hemin against ischemia/reperfusion injury in rat hearts.
Xiao-Ming CHEN ; Bi-E TANG ; Wei-Ming SUN ; Yang WANG
Chinese Journal of Applied Physiology 2014;30(1):70-73
OBJECTIVETo investigate whether the cardioprotective effect of hemin against ischemia/reperfusion (I/R) injury is through the inhibition of calpain activity, and to explore its underlying mechanism.
METHODSSixty-four SD rats were randomly divided into eight groups (n = 8): sham, I/R, MDL+ I/R, MDL, hemin + I/R, hemin, and ZnPP + hemin+ I/R, ZnPP. Iangendorff isolated rat heart perfusion model was used. The rat hearts were suffered from 40 min of ischemia followed by 30 min of reperfusion. After that, left ventricular developed pressure (LVDP) was recorded. Infarct size and release of lactate dehydrogenase (LDH) were measured. Calpain, heme oxygenase (HO), and caspase 3 activities were evaluated. Expression of calpastatin protein was detected by Western blot.
RESULTS(1) After suffered from ischemia/reperfusion, the calpain activity and caspase 3 activity increased. MDL28170, an inhibitor of calpain, prevented ischemia/reperfusion induced increases in LDH and infarct size, improved the LVDP recovery. (2) Compared with ischema/reperfusion rat hearts, pretreatment of hemin enhanced the HO-1 activity, decreased the calpain and caspase 3 activities, declined LDH release and infarct size, and improved LVDP recovery. (3) Ischemia/reperfusion reduced the expression of calpastatin protein in rat hearts, which was inhibited by hemin pretreatment. And HO-1 inhibitor could abolish the cardioprotection of hemin.
CONCLUSIONCardioprotective effect of hemin against ischemia/reperfusion injury is through the inhibition of calpain activity, the mechanism might be involved in the increase in calpastatin protein expression.
Animals ; Calpain ; metabolism ; Cardiotonic Agents ; pharmacology ; Caspase 3 ; metabolism ; Heme Oxygenase-1 ; metabolism ; Hemin ; pharmacology ; L-Lactate Dehydrogenase ; metabolism ; Myocardial Reperfusion Injury ; drug therapy ; Rats ; Rats, Sprague-Dawley
8.Change of Expression and Activity of Heme Oxygenase-1 in Rat Corpus Cavernosum during Low-flow Priapism.
Woo Jin KIM ; Hang Ki JUNG ; Jae Hun JUNG ; Sung Chul KAM ; Jeong Seok HWA ; Jae Seog HYUN
Korean Journal of Andrology 2004;22(2):81-86
PURPOSE: The inducible isoform of heme oxygenase(HO), HO-1, responds to hypoxia. HO-1 regulates vascular smooth muscle tone through carbon monoxide production. To investigate the possible role of HO-1 in low-flow priapism, we examined the expression and activity of HO-1 in artificially induced veno-occlusive priapism in rat. MATERIALS AND METHODS: Fourteen male Sprague Dawley rats were divided into 2 groups with 7 rats each. In the first group, low-flow priapism was induced using a vacuum-constriction device and a constriction rubber band; in the second group, low-flow priapism was induced using papaverine. We measured the expression level and activity of HO-1 in penile tissues after time periods of 0(control), 2, 3, 4, 8, 12, 24, and 48 hours. At the same time, the expression levels of i-NOS, e-NOS, and beta-actin(control) in penile tissues were also measured. RESULTS: In both groups, expression of HO-1 and HO-1 enzyme activities in penile tissue significantly increased in a time dependent fashion(p<0.01). However, there was no difference in the expression of i-NOS and e-NOS in both groups at any time period. CONCLUSIONS: HO-1 was induced over time in rats with artificially induced veno-occlusive priapism. Induction of HO-1 may play a protective role against hypoxic injury, but may also play an important role in the vicious cycle observed for low flow priapism. Increasing induction of HO-1 against hypoxic injury in a prolonged erectile state promotes sustained dilatation of corporal smooth muscle, and this may aggravate low-flow priapism.
Animals
;
Anoxia
;
Carbon Monoxide
;
Constriction
;
Dilatation
;
Heme Oxygenase (Decyclizing)
;
Heme Oxygenase-1*
;
Heme*
;
Humans
;
Male
;
Muscle, Smooth
;
Muscle, Smooth, Vascular
;
Papaverine
;
Priapism*
;
Rats*
;
Rats, Sprague-Dawley
;
Rubber
10.Acute Intermittent Porphyria and Pregnancy.
Ji Hee RYU ; Eun A CHOI ; Hyung Min CHOI ; Tae Yoon KIM ; Jae Sung CHO ; Yong Won PARK ; Jae Wook KIM
Korean Journal of Obstetrics and Gynecology 1997;40(2):414-418
The Porphyria are a group of inherited and acquired disorders characterized by partial defects in the heme biosynthetic pathway. Among the hepatic forms, acute intermittent porphyria(AIP) is the most severe and common type in western hemisphere. Though its association with pregnancy is rare, it presents the obstetrician with challenging problems in diagnosis and management and it is probable that pregnancy had some deleterious effect in acute porphyria. The authors present a cae of AIP in pregnancy with a review of literature.
Biosynthetic Pathways
;
Diagnosis
;
Heme
;
Porphyria, Acute Intermittent*
;
Porphyrias
;
Pregnancy*