1.Development and evaluation of indirect ELISA for the detection of antibodies against Japanese encephalitis virus in swine.
Dong Kun YANG ; Byoung Han KIM ; Seong In LIM ; Jun Hun KWON ; Kyung Woo LEE ; Cheong Up CHOI ; Chang Hee KWEON
Journal of Veterinary Science 2006;7(3):271-275
The Japanese encephalitis virus (JEV) is one of causative agents of reproductive failure in pregnant sows. An indirect enzyme-linked immunosorbent assay (I-ELISA) was examined for its potential use in the rapid monitoring of the JEV, and the results were compared with those from the hemagglutination inhibition (HI) and serum neutralization (SN) tests. The comparative analysis showed that the results of I-ELISA showed a significant correlation with the conventional HI (r = 0.867) and SN tests (r = 0.804), respectively. When the I-ELISA results were compared with the traditional diagnostic assays, the sensitivity of the I-ELISA was 94.3% with the HI test and 93.7% with the SN test, respectively. The specificity was found to be 81.4% and 80.0% with the HI and SN tests, respectively. To determine the applicability of I-ELISA in the field, the serum samples from 720 pigs were collected from 4 regions in Korea between July and August 2004. The results indicated that 21.7% of screened pigs were seropositive for the JEV. The seropositive rates of JEV in the 4 provinces were 12.6% in Gyeonggi, 45.0% in Gyeongnam, 16.7% in Jeonbuk, and 12.2% in Jeju. The I-ELISA methodology developed in this study was shown to have considerable sensitivity and specificity through a comparison with HI and the SN tests. Therefore, it might be one of convenient methods for screening a large number of samples in various fields.
Animals
;
Antibodies, Viral/blood
;
Antigens, Viral/immunology
;
Encephalitis Virus, Japanese/immunology/*isolation&purification
;
Encephalitis, Japanese/blood/immunology/*veterinary/virology
;
Enzyme-Linked Immunosorbent Assay/methods/*veterinary
;
Female
;
Hemagglutination Inhibition Tests/veterinary
;
Korea
;
Neutralization Tests/veterinary
;
Swine
;
Swine Diseases/blood/immunology/*virology
2.Preparation and diagnostic utility of a hemagglutination inhibition test antigen derived from the baculovirus-expressed hemagglutinin-neuraminidase protein gene of Newcastle disease virus.
Kang Seuk CHOI ; Soo Jeong KYE ; Woo Jin JEON ; Mi Ja PARK ; Saeromi KIM ; Hee Jung SEUL ; Jun Hun KWON
Journal of Veterinary Science 2013;14(3):291-297
A recombinant hemagglutinin-neuraminidase (rHN) protein from Newcastle disease virus (NDV) with hemagglutination (HA) activity was expressed in Spodoptera frugiperda cells using a baculovirus expression system. The rHN protein extracted from infected cells was used as an antigen in a hemagglutination inhibition (HI) test for the detection and titration of NDV-specific antibodies present in chicken sera. The rHN antigen produced high HA titers of 2(13) per 25 microL, which were similar to those of the NDV antigen produced using chicken eggs, and it remained stable without significant loss of the HA activity for at least 12 weeks at 4degrees C. The rHN-based HI assay specifically detected NDV antibodies, but not the sera of other avian pathogens, with a specificity and sensitivity of 100% and 98.0%, respectively, in known positive and negative chicken sera (n = 430). Compared with an NDV-based HI assay, the rHN-based HI assay had a relative sensitivity and specificity of 96.1% and 95.5%, respectively, when applied to field chicken sera. The HI titers of the rHN-based HI assay were highly correlated with those in an NDV-based HI assay (r = 0.927). Overall, these results indicate that rHN protein provides a useful alternative to NDV antigen in HI assays.
Animals
;
Antibodies, Viral/*blood
;
Antigens, Viral/*diagnostic use/genetics/metabolism
;
Baculoviridae/genetics
;
Chickens
;
HN Protein/*diagnostic use/genetics/metabolism
;
Hemagglutination Inhibition Tests/*methods/veterinary
;
Newcastle Disease/*diagnosis/immunology/virology
;
Newcastle disease virus/genetics/*immunology/metabolism
;
Poultry Diseases/*diagnosis/immunology/virology
;
Recombinant Proteins/diagnostic use/genetics/metabolism
;
Sf9 Cells
;
Spodoptera