1.Pathophysiological Role of Neuroinflammation in Neurodegenerative Diseases and Psychiatric Disorders.
Heeok HONG ; Byung Sun KIM ; Heh In IM
International Neurourology Journal 2016;20(Suppl 1):S2-S7
Brain diseases and disorders such as Alzheimer disease, Parkinson disease, depression, schizophrenia, autism, and addiction lead to reduced quality of daily life through abnormal thoughts, perceptions, emotional states, and behavior. While the underlying mechanisms remain poorly understood, human and animal studies have supported a role of neuroinflammation in the etiology of these diseases. In the central nervous system, an increased inflammatory response is capable of activating microglial cells, leading to the release of pro-inflammatory cytokines including interleukin (IL)-1β, IL-6, and tumor necrosis factor-α. In turn, the pro-inflammatory cytokines aggravate and propagate neuroinflammation, degenerating healthy neurons and impairing brain functions. Therefore, activated microglia may play a key role in neuroinflammatory processes contributing to the pathogenesis of psychiatric disorders and neurodegeneration.
Alzheimer Disease
;
Animals
;
Autistic Disorder
;
Brain
;
Brain Diseases
;
Central Nervous System
;
Cytokines
;
Depression
;
Humans
;
Inflammation
;
Interleukin-6
;
Interleukins
;
Microglia
;
Necrosis
;
Neurodegenerative Diseases*
;
Neurons
;
Parkinson Disease
;
Schizophrenia
2.Epigenetic Dysfunction of Neurodegenerative Diseases, MeCP2 and More
International Neurourology Journal 2022;26(Suppl 2):S83-84
4.Quantitative Sequencing Analysis of the Striatal Transcriptome in a Mouse Model of Alzheimer Disease
Tae Kyoo KIM ; Sangjoon LEE ; Heh-In IM
International Neurourology Journal 2022;26(Suppl 2):S117-125
Purpose:
The purpose of this study was to analyze the transcriptomic changes in the striatum of amyloid precursor protein/presenilin 1 (APP/PS1) transgenic mice and uncover its association with the methyl-CpG binding protein 2 (MeCP2) mediated-changes in striatal epigenetic signature during Alzheimer disease (AD) pathological progression.
Methods:
To observe transcriptomic alterations in the striatum before the onset of cognitive impairment in APP/PS1 mice, quantitative 3’mRNA sequencing was performed with RNA extracted from the striatum of 6-month-old and 12-month-old wildtype and APP/PS1 mice. In addition, chromatin immunoprecipitation sequencing was conducted with the DNA from wildtype and APP/PS1 mice of the same age as aforementioned. For transcriptomic analysis, comparison terms were constructed based on aging and transgene expression—normal-aging (12-month-old wildtype/6-month-old wildtype), early-AD (6-month-old APP/PS1/6-month-old wildtype), and late-AD (12-month-old APP/PS1/6-month-old wildtype). To compare the changes in biological pathways and networks, we analyzed gene lists from each comparison term via bioinformatics tools including DAVID (Database for Annotation, Visualization, and Integrated Discovery), STRING (Search Tool for the Retrieval of Interacting Genes/Proteins), and SynGO (Synaptic Gene Ontologies). Furthermore, to assume the effect MeCP2 in AD pathological conditions may have on the transcriptome regulation, analysis of the common genes from Quant-Seq and MeCP2-ChIP-Seq was performed.
Results:
Enriched pathways including immune system and inflammatory response were confirmed in normal- aging and lateAD, respectively. In particular, enriched pathways of gene expression regulation, transcriptional regulation, and protein catabolic pathways were found to be significantly altered in early-AD. MeCP2-bound genes that were significantly altered in the transcriptome were suggested to be target genes that have a role in the striatum of the early-stage AD model.
Conclusions
This study confirmed that the alteration of the striatal transcriptomic profile in APP/PS1 mice was involved with several biological pathways. Additionally, comparative analysis of the transcriptomic changes and the MeCP2 bound regions found that a group of differentially expressed genes may be regulated under the epigenetic control of MeCP2.
5.Drug Abuse and Psychosis: New Insights into Drug-induced Psychosis.
Suji HAM ; Tae Kyoo KIM ; Sooyoung CHUNG ; Heh In IM
Experimental Neurobiology 2017;26(1):11-24
Addictive drug use or prescribed medicine abuse can cause psychosis. Some representative symptoms frequently elicited by patients with psychosis are hallucination, anhedonia, and disrupted executive functions. These psychoses are categorized into three classifications of symptoms: positive, negative, and cognitive. The symptoms of DIP are not different from the symptoms of schizophrenia, and it is difficult to distinguish between them. Due to this ambiguity of distinction between the DIP and schizophrenia, the DIP animal model has been frequently used as the schizophrenia animal model. However, although the symptoms may be the same, its causes are clearly different in that DIP is acquired and schizophrenia is heritable. Therefore, in this review, we cover several DIP models such as of amphetamine, PCP/ketamine, scopolamine, and LSD, and then we also address three schizophrenia models through a genetic approach with a new perspective that distinguishes DIP from schizophrenia.
Amphetamine
;
Anhedonia
;
Classification
;
Executive Function
;
Hallucinations
;
Humans
;
Lysergic Acid Diethylamide
;
Models, Animal
;
Psychotic Disorders*
;
Schizophrenia
;
Scopolamine Hydrobromide
;
Substance-Related Disorders*
6.Methyl-CpG Binding Protein 2 in Alzheimer Dementia
Baeksun KIM ; Yunjung CHOI ; Hye Sun KIM ; Heh In IM
International Neurourology Journal 2019;23(Suppl 2):S72-S81
Despite decades of research on Alzheimer disease, understanding the complexity of the genetic and molecular interactions involved in its pathogenesis remains far from our grasp. Methyl-CpG Binding Protein 2 (MeCP2) is an important epigenetic regulator enriched in the brain, and recent findings have implicated MeCP2 as a crucial player in Alzheimer disease. Here, we provide comprehensive insights into the pathophysiological roles of MeCP2 in Alzheimer disease. In particular, we focus on how the alteration of MeCP2 expression can impact Alzheimer disease through risk genes, amyloid-β and tau pathology, cell death and neurodegeneration, and cellular senescence. We suggest that Alzheimer disease can be adversely affected by upregulated MeCP2-dependent repression of risk genes (MEF2C, ADAM10, and PM20D1), increased tau accumulation, and neurodegeneration through neuronal cell death (excitotoxicity and apoptosis). In addition, we propose that the progression of Alzheimer disease could be caused by reduced MeCP2-mediated enhancement of astrocytic and microglial senescence and consequent glial SASP (senescence-associated secretory phenotype)-dependent neuroinflammation. We surmise that any imbalance in MeCP2 function would accelerate or cause Alzheimer disease pathogenesis, implying that MeCP2 may be a potential drug target for the treatment and prevention of Alzheimer disease.
7.Striatal ZBTB16 Is Associated With Cognitive Deficits in Alzheimer Disease Mice
Sangjoon LEE ; Tae Kyoo KIM ; Ji Eun CHOI ; Hye-Sun KIM ; Heh-In IM
International Neurourology Journal 2022;26(Suppl 2):S106-116
Purpose:
In Alzheimer disease (AD), brain regions such as the cortex and the hippocampus show abundant amyloid load which correlates with cognitive function decline. Prior to the significant development of AD pathophysiology, patients report the manifestation of neuropsychiatric symptoms, indicating a functional interplay between basal ganglia structures and hippocampal regions. Zinc finger and BTB domain-containing protein 16 (ZBTB16) is a transcription factor that controls the expression of downstream genes and the involvement of ZBTB16 in the striatum undergoing pathological aging in AD and the resulting behavioral phenotypes has not yet been explored.
Methods:
To study molecular alterations in AD pathogenesis, we analyzed the brain from amyloid precursor protein (APP)/ presenilin 1 (PS1) transgenic mice. The molecular changes in the striatal region of the brain were analyzed via the immunoblotting, and the quantitative RNA sequencing. The cognitive impairments of APP/PS1 mice were assessed via 3 behavioral tests: 3-chamber test, Y-maze test, and noble object recognition test. And multielectrode array experiments for the analysis of the neuronal activity of the striatum in APP/PS1 mice was performed.
Results:
We found that the alteration in ZBTB16 levels that occurred in the early ages of the pathologically aging striatum coalesces with the disruption of transcriptional dysregulation while causing social memory deficits, anxiety-like behavior. The early ZBTB16 knockdown treatment in the striatum of APP/PS1 mice rescued cognition that continued into later age.
Conclusions
This study demonstrates that perturbation of transcriptional regulation of ZBTB16 during pathological aging may influence cognitive impairments and reveals a potent approach to targeting the transcriptional regulation of the striatum for the treatment of AD.
8.Claustral MeCP2 Regulates Methamphetamine-induced Conditioned Place Preference in Cynomolgus Monkey
Jinhee BAE ; Sujin AHN ; Doo-Wan CHO ; Hyung-Sun KIM ; Su-Cheol HAN ; Heh-In IM
Experimental Neurobiology 2022;31(6):390-400
The claustrum, a brain nucleus located between the cortex and the striatum, has recently been highlighted in drug-related reward processing. Methyl CpG-binding protein-2 (MeCP2) is a transcriptional regulator that represses or activates the expression of the target gene and has been known to have an important role in the regulation of drug addiction in the dopaminergic reward system. The claustrum is an important region for regulating reward processing where most neurons receive dopamine input; additionally, in this region, MeCP2 is also abundantly expressed. Therefore, here, we hypothesized that MeCP2 would be involved in drug addiction control in the Claustrum as well and investigated how claustral MeCP2 regulates drug addiction. To better understand the function of human claustral MeCP2, we established a non-human primate model of methamphetamine (METH) - induced conditioned place preference (CPP). After a habituation of two days and conditioning of ten days, the CPP test was conducted for three days. Interestingly, we confirmed that virus-mediated overexpression of MECP2 in the claustrum showed a significant reduction of METH-induced CPP in the three consecutive days during the testing period. Moreover, they showed a decrease in visit scores (frequency for visit) for the METH-paired room compared to the control group although the scores were statistically marginal. Taken together, we suggest that the claustrum is an important brain region associated with drug addiction, in which MeCP2 may function as a mediator in regulating the response to addictive drugs.
9.Comprehensive MicroRNAome Analysis of the Relationship Between Alzheimer Disease and Cancer in PSEN Double-Knockout Mice.
Suji HAM ; Tae Kyoo KIM ; Jeewon RYU ; Yong Sik KIM ; Ya Ping TANG ; Heh In IM
International Neurourology Journal 2018;22(4):237-245
PURPOSE: Presenilins are functionally important components of γ-secretase, which cleaves a number of transmembrane proteins. Manipulations of PSEN1 and PSEN2 have been separately studied in Alzheimer disease (AD) and cancer because both involve substrates of γ-secretase. However, numerous clinical studies have reported an inverse correlation between AD and cancer. Interestingly, AD is a neurodegenerative disorder, whereas cancer is characterized by the proliferation of malignant cells. However, this inverse correlation in the PSEN double-knockout (PSEN dKO) mouse model of AD has been not elucidated, although doing so would shed light onto the relationship between AD and cancer. METHODS: To investigate the inverse relationship of AD and cancer under conditions of PSEN loss, we used the hippocampus of 7-month-old and 18-month-old PSEN dKO mice for a microRNA (miRNA) microarray analysis, and explored the tumorsuppressive or oncogenic role of differentially-expressed miRNAs. RESULTS: The total number of miRNAs that showed changes in expression level was greater at 18 months of age than at 7 months. Most of the putative target genes of the differentially-expressed miRNAs involved Cancer pathways. CONCLUSIONS: Based on literature reviews, many of the miRNAs involved in Cancer pathways were found to be known tumorsuppressive miRNAs, and their target genes were known or putative oncogenes. In conclusion, the expression levels of known tumor-suppressive miRNAs increased at 7 and 18 months, in the PSEN dKO mouse model of AD, supporting the negative correlation between AD and cancer.
Alzheimer Disease*
;
Animals
;
Hippocampus
;
Humans
;
Infant
;
Mice*
;
Microarray Analysis
;
MicroRNAs
;
Neurodegenerative Diseases
;
Oncogenes
;
Presenilins
10.Baicalein Protects 6-OHDA-induced Neuronal Damage by Suppressing Oxidative Stress.
Heh In IM ; Eunjoo NAM ; Eun sun LEE ; Yu jin HWANG ; Yong Sik KIM
The Korean Journal of Physiology and Pharmacology 2006;10(6):309-315
The protective effects of baicalein, one of the flavonoids in Scutellaria baicalensis Georgi, were evaluated against 6-hydroxydopamine (6-OHDA)-induced neuronal damage in mice and cultured human neuroblastoma cells. Nigrostriatal damage was induced by stereotaxically injecting 6-OHDA into the right striatum. Baicalein was administered intraperitoneally 30 min before and 90 min after lesion induction. Animals received a further daily injection of baicalein for 3 consecutive days. Two weeks after 6-OHDA injection, contralateral rotational asymmetry was observed by apomorphine challenge in lesioned mice. Tyrosine hydroxylase (TH) immunohistochemistry revealed a significant loss of terminals in lesioned striatum and the reduction of the numbers of TH-positive cell in the ipsilateral substantia nigra (SN). In addition, the levels of dopamine (DA) and DA metabolites were reduced and lipid peroxidation was increased in lesioned striatum. However, baicalein treatment reduced apomorphine-induced rotational behavior in 6-OHDA-lesioned mice, and increased TH immunoreactivity in the striatum and SN, and DA levels in lesioned striatum. Lipid peroxidation induced by 6-OHDA was also inhibited by baicalein treatment. Furthermore, when SH-SY5Y human neuroblastoma cells were treated with baicalein, 6-OHDA-induced cytotoxicity and reactive oxygen species (ROS) production were significantly reduced. These results indicate that baicalein effectively protects 6-OHDA-induced neuronal damage through antioxidant action.
Animals
;
Apomorphine
;
Dopamine
;
Flavonoids
;
Humans
;
Immunohistochemistry
;
Lipid Peroxidation
;
Mice
;
Neuroblastoma
;
Neurons*
;
Oxidative Stress*
;
Oxidopamine
;
Reactive Oxygen Species
;
Scutellaria baicalensis
;
Substantia Nigra
;
Tyrosine 3-Monooxygenase