1.Somatostatin Receptor.
Eunhee KIM ; Sookjin SOHN ; Mina LEE ; Heesoon PARK ; Jeechang JUNG ; Seungjoon PARK
Journal of Korean Society of Endocrinology 2003;18(4):342-355
No abstract available.
Receptors, Somatostatin*
;
Somatostatin*
2.Neuroprotective and Antioxidant Effects of Novel Benzofuran-2-Carboxamide Derivatives.
Jungsook CHO ; Chowee PARK ; Youngmun LEE ; Sunyoung KIM ; Shambhunath BOSE ; Minho CHOI ; Arepalli Sateesh KUMAR ; Jae Kyung JUNG ; Heesoon LEE
Biomolecules & Therapeutics 2015;23(3):275-282
In the present study, we synthesized a series of novel 7-methoxy-N-(substituted phenyl)benzofuran-2-carboxamide derivatives in moderate to good yields and evaluated their neuroprotective and antioxidant activities using primary cultured rat cortical neuronal cells and in vitro cell-free bioassays. Based on our primary screening data with eighteen synthesized derivatives, nine compounds (1a, 1c, 1f, 1i, 1j, 1l, 1p, 1q and 1r) exhibiting considerable protection against the NMDA-induced excitotoxic neuronal cell damage at the concentration of 100 muM were selected for further evaluation. Among the selected derivatives, compound 1f (with -CH3 substitution at R2 position) exhibited the most potent and efficacious neuroprotective action against the NMDA-induced excitotoxicity. Its neuroprotective effect was almost comparable to that of memantine, a well-known NMDA antagonist, at 30 muM concentration. In addition to 1f, compound 1j (with -OH substitution at R3 position) also showed marked anti-excitotoxic effects at both 100 and 300 muM concentrations. These findings suggest that -CH3 substitution at R2 position and, to a lesser degree, -OH substitution at R3 position may be important for exhibiting neuroprotective action against excitotoxic damage. Compound 1j was also found to scavenge 1,1-diphenyl-2-picrylhydrazyl radicals and inhibit in vitro lipid peroxidation in rat brain homogenate in moderate and appreciable degrees. Taken together, our structure-activity relationship studies suggest that the compound with -CH3 substitution at R2 and -OH substitution at R3 positions of the benzofuran moiety might serve as the lead exhibiting potent anti-excitotoxic, ROS scavenging, and antioxidant activities. Further synthesis and evaluation will be necessary to confirm this possibility.
Animals
;
Antioxidants*
;
Biological Assay
;
Brain
;
Lipid Peroxidation
;
Mass Screening
;
Memantine
;
N-Methylaspartate
;
Neurons
;
Neuroprotective Agents
;
Rats
;
Reactive Oxygen Species
;
Structure-Activity Relationship
3.Modulation of Pituitary Somatostatin Receptor Subtype (sst1-5) mRNA Levels by Growth Hormone (GH) -Releasing Hormone in Purified Somatotropes.
Seungjoon PARK ; Heesoon PARK ; Mina LEE ; Sookjin SOHN ; Eunhee KIM ; Jeechang JUNG ; Lawrence A FROHMAN ; Rhonda D KINEMAN
The Korean Journal of Physiology and Pharmacology 2003;7(2):79-84
We have previously reported that expression of the somatostatin receptor subtypes, sst1-5, is differentially regulated by growth hormone (GH) -releasing hormone (GHRH) and forskolin (FSK), in vitro. GHRH binds to membrane receptors selectively located on pituitary somatotropes, activates adenylyl cyclase (AC) and increases sst1 and sst2 and decreases sst5 mRNA levels, without significantly altering the expression of sst3 and sst4. In contrast FSK directly activates AC in all pituitary cell types and increases sst1 and sst2 mRNA levels and decreases sst3, sst4 and sst5 expression. Two explanations could account for these differential effects: 1) GHRH inhibits sst3 and sst4 expression in somatotropes, but this inhibitory effect is masked by expression of these receptors in unresponsive pituitary cell types, and 2) FSK inhibits sst3 and sst4 expression levels in pituitary cell types other than somatotropes. To differentiate between these two possibilities, somatotropes were sequentially labeled with monkey anti-rat GH antiserum, biotinylated goat anti-human IgG, and streptavidin-PE and subsequently purified by fluorescent-activated cell sorting (FACS). The resultant cell population consisted of 95% somatotropes, as determined by GH immunohistochemistry using a primary GH antiserum different from that used for FACS sorting. Purified somatotropes were cultured for 3 days and treated for 4 h with vehicle, GHRH (10 nM) or FSK (10micrometer). Total RNA was isolated by column extraction and specific receptor mRNA levels were determined by semi-quantitative multiplex RT-PCR. Under basal conditions, the relative expression levels of the various somatostatin receptor subtypes were sst2> sst5> sst3=sst1> sst4. GHRH treatment increased sst1 and sst2 mRNA levels and decreased sst3, sst4 and sst5 mRNA levels in purified somatotropes, comparable to the effects of FSK on purified somatotropes and mixed pituitary cell cultures. Taken together, these results demonstrate that GHRH acutely modulates the expression of all somatostatin receptor subtypes within GH-producing cells and its actions are likely mediated by activation of AC.
Adenylyl Cyclases
;
Cell Culture Techniques
;
Colforsin
;
Goats
;
Growth Hormone*
;
Haplorhini
;
Immunoglobulin G
;
Immunohistochemistry
;
Masks
;
Membranes
;
Receptors, Somatostatin*
;
RNA
;
RNA, Messenger*
;
Somatostatin*