1.Treatment of Giant Celiac Artery Aneurysm by Conjoined Splenic-Hepatic Trunk Transposition.
Hyung Kee KIM ; Heekyung JUNG ; Jayun CHO ; Jae Min CHUN ; Seung HUH
Journal of the Korean Society for Vascular Surgery 2013;29(2):67-70
Celiac artery aneurysms are extremely rare vascular lesions usually diagnosed by chance. A 62-year-old male was being referred to Kyungpook National University Hospital with a seven day history of upper right quadrant abdominal pain. A computed tomography scan revealed an acute cholecystitis and a 7-cm sized huge aneurysm located from the origin of celiac artery to the bifurcation of celiac artery. After an initial cholecystectomy, the aneurysm was opened and the origin of celiac artery was oversewn with aorta followed by transposing and implanting the conjoined splenic-hepatic trunk to supraceliac aorta. The patient was discharged without complications on the tenth postoperative day. Conjoined splenic-hepatic trunk transposition for the repair of a celiac artery aneurysm may be an appropriate alternative option especially in cases complicated with other infectious conditions.
Abdominal Pain
;
Aneurysm
;
Aorta
;
Celiac Artery
;
Cholecystectomy
;
Cholecystitis
;
Cholecystitis, Acute
;
Humans
;
Male
;
Splenic Artery
2.A Nationwide Survey on Infection Prevention and Control in Acute Care Hospitals of Korea
Sun Hee NA ; Yubin SEO ; Hye Jin SHI ; In Sun HWANG ; Kyong A SHIN ; Kwang Yul SON ; Sung Ran KIM ; Myoungjin SHIN ; Hee-jung SON ; Ji Youn CHOI ; Heekyung CHUN ; Sook-Kyung PARK ; Jeongsuk SONG ; Namyi KIM ; Jacob LEE ; Joong Sik EOM
Journal of Korean Medical Science 2025;40(4):e41-
Background:
Healthcare-associated infections impose a significant burden on antibiotic usage, healthcare expenditures, and morbidity. Therefore, it is crucial to revise policies to minimize such losses. This nationwide survey aimed to evaluate infection prevention and control (IPC) components in healthcare facilities and encourage improvements in acute care hospitals with inadequate infection prevention settings. This study aims to enhance the infection control capabilities of healthcare facilities.
Methods:
From December 27, 2021, to May 13, 2022, we conducted a survey of 1,767 acute care hospitals in the Republic of Korea. A survey was conducted to evaluate the infection control components in 1,767 acute care hospitals. Infection control officers provided direct responses to a systematically developed questionnaire. Subsequently, 10% of the respondents were randomly selected for the site investigation.
Results:
Overall, 1,197 (67.7%) hospitals responded to the online survey. On-site investigations were conducted at 125 hospitals. Hospitals with ≥ 150 beds are advised to have an IPC team under Article 3 of the Medical Service Act; however, only 87.0% (598/687) of hospitals with ≥ 100 beds had one. Conversely, 22.7% (116/510) of hospitals with < 100 beds had an IPC team. Regulations for hand hygiene, waste management, healthcare worker protection and safety, environmental cleaning, standard precautions, and prevention of the transmission of multidrug-resistant pathogens were present in 84.2%, 80.1%, 77.4%, 76.2%, 75.8%, and 63.5% of the hospitals, respectively. Hospitals with < 100 beds had low availability of all categories of standard operating procedures.
Conclusion
This study is the first national survey of acute care hospitals in the Republic of Korea. The data presented in the current study will improve the understanding of IPC status and will help establish a survey system. Our survey provides a basis for improving policies related to IPC in healthcare facilities.
3.A Nationwide Survey on Infection Prevention and Control in Acute Care Hospitals of Korea
Sun Hee NA ; Yubin SEO ; Hye Jin SHI ; In Sun HWANG ; Kyong A SHIN ; Kwang Yul SON ; Sung Ran KIM ; Myoungjin SHIN ; Hee-jung SON ; Ji Youn CHOI ; Heekyung CHUN ; Sook-Kyung PARK ; Jeongsuk SONG ; Namyi KIM ; Jacob LEE ; Joong Sik EOM
Journal of Korean Medical Science 2025;40(4):e41-
Background:
Healthcare-associated infections impose a significant burden on antibiotic usage, healthcare expenditures, and morbidity. Therefore, it is crucial to revise policies to minimize such losses. This nationwide survey aimed to evaluate infection prevention and control (IPC) components in healthcare facilities and encourage improvements in acute care hospitals with inadequate infection prevention settings. This study aims to enhance the infection control capabilities of healthcare facilities.
Methods:
From December 27, 2021, to May 13, 2022, we conducted a survey of 1,767 acute care hospitals in the Republic of Korea. A survey was conducted to evaluate the infection control components in 1,767 acute care hospitals. Infection control officers provided direct responses to a systematically developed questionnaire. Subsequently, 10% of the respondents were randomly selected for the site investigation.
Results:
Overall, 1,197 (67.7%) hospitals responded to the online survey. On-site investigations were conducted at 125 hospitals. Hospitals with ≥ 150 beds are advised to have an IPC team under Article 3 of the Medical Service Act; however, only 87.0% (598/687) of hospitals with ≥ 100 beds had one. Conversely, 22.7% (116/510) of hospitals with < 100 beds had an IPC team. Regulations for hand hygiene, waste management, healthcare worker protection and safety, environmental cleaning, standard precautions, and prevention of the transmission of multidrug-resistant pathogens were present in 84.2%, 80.1%, 77.4%, 76.2%, 75.8%, and 63.5% of the hospitals, respectively. Hospitals with < 100 beds had low availability of all categories of standard operating procedures.
Conclusion
This study is the first national survey of acute care hospitals in the Republic of Korea. The data presented in the current study will improve the understanding of IPC status and will help establish a survey system. Our survey provides a basis for improving policies related to IPC in healthcare facilities.
4.A Nationwide Survey on Infection Prevention and Control in Acute Care Hospitals of Korea
Sun Hee NA ; Yubin SEO ; Hye Jin SHI ; In Sun HWANG ; Kyong A SHIN ; Kwang Yul SON ; Sung Ran KIM ; Myoungjin SHIN ; Hee-jung SON ; Ji Youn CHOI ; Heekyung CHUN ; Sook-Kyung PARK ; Jeongsuk SONG ; Namyi KIM ; Jacob LEE ; Joong Sik EOM
Journal of Korean Medical Science 2025;40(4):e41-
Background:
Healthcare-associated infections impose a significant burden on antibiotic usage, healthcare expenditures, and morbidity. Therefore, it is crucial to revise policies to minimize such losses. This nationwide survey aimed to evaluate infection prevention and control (IPC) components in healthcare facilities and encourage improvements in acute care hospitals with inadequate infection prevention settings. This study aims to enhance the infection control capabilities of healthcare facilities.
Methods:
From December 27, 2021, to May 13, 2022, we conducted a survey of 1,767 acute care hospitals in the Republic of Korea. A survey was conducted to evaluate the infection control components in 1,767 acute care hospitals. Infection control officers provided direct responses to a systematically developed questionnaire. Subsequently, 10% of the respondents were randomly selected for the site investigation.
Results:
Overall, 1,197 (67.7%) hospitals responded to the online survey. On-site investigations were conducted at 125 hospitals. Hospitals with ≥ 150 beds are advised to have an IPC team under Article 3 of the Medical Service Act; however, only 87.0% (598/687) of hospitals with ≥ 100 beds had one. Conversely, 22.7% (116/510) of hospitals with < 100 beds had an IPC team. Regulations for hand hygiene, waste management, healthcare worker protection and safety, environmental cleaning, standard precautions, and prevention of the transmission of multidrug-resistant pathogens were present in 84.2%, 80.1%, 77.4%, 76.2%, 75.8%, and 63.5% of the hospitals, respectively. Hospitals with < 100 beds had low availability of all categories of standard operating procedures.
Conclusion
This study is the first national survey of acute care hospitals in the Republic of Korea. The data presented in the current study will improve the understanding of IPC status and will help establish a survey system. Our survey provides a basis for improving policies related to IPC in healthcare facilities.
5.A Nationwide Survey on Infection Prevention and Control in Acute Care Hospitals of Korea
Sun Hee NA ; Yubin SEO ; Hye Jin SHI ; In Sun HWANG ; Kyong A SHIN ; Kwang Yul SON ; Sung Ran KIM ; Myoungjin SHIN ; Hee-jung SON ; Ji Youn CHOI ; Heekyung CHUN ; Sook-Kyung PARK ; Jeongsuk SONG ; Namyi KIM ; Jacob LEE ; Joong Sik EOM
Journal of Korean Medical Science 2025;40(4):e41-
Background:
Healthcare-associated infections impose a significant burden on antibiotic usage, healthcare expenditures, and morbidity. Therefore, it is crucial to revise policies to minimize such losses. This nationwide survey aimed to evaluate infection prevention and control (IPC) components in healthcare facilities and encourage improvements in acute care hospitals with inadequate infection prevention settings. This study aims to enhance the infection control capabilities of healthcare facilities.
Methods:
From December 27, 2021, to May 13, 2022, we conducted a survey of 1,767 acute care hospitals in the Republic of Korea. A survey was conducted to evaluate the infection control components in 1,767 acute care hospitals. Infection control officers provided direct responses to a systematically developed questionnaire. Subsequently, 10% of the respondents were randomly selected for the site investigation.
Results:
Overall, 1,197 (67.7%) hospitals responded to the online survey. On-site investigations were conducted at 125 hospitals. Hospitals with ≥ 150 beds are advised to have an IPC team under Article 3 of the Medical Service Act; however, only 87.0% (598/687) of hospitals with ≥ 100 beds had one. Conversely, 22.7% (116/510) of hospitals with < 100 beds had an IPC team. Regulations for hand hygiene, waste management, healthcare worker protection and safety, environmental cleaning, standard precautions, and prevention of the transmission of multidrug-resistant pathogens were present in 84.2%, 80.1%, 77.4%, 76.2%, 75.8%, and 63.5% of the hospitals, respectively. Hospitals with < 100 beds had low availability of all categories of standard operating procedures.
Conclusion
This study is the first national survey of acute care hospitals in the Republic of Korea. The data presented in the current study will improve the understanding of IPC status and will help establish a survey system. Our survey provides a basis for improving policies related to IPC in healthcare facilities.
6.Impact of Infection Prevention Programs on Catheter-Associated Urinary Tract Infections Analyzed in Multicenter Study
Sun Hee NA ; Joong Sik EOM ; Yu Bin SEO ; Sun Hee PARK ; Young Keun KIM ; Wonkeun SONG ; Eunjung LEE ; Sung Ran KIM ; Hyeon Mi YOO ; Heekyung CHUN ; Myoung Jin SHIN ; Su Hyun KIM ; Ji Youn CHOI ; Nan hyoung CHO ; Jin Hwa KIM ; Hee-jung SON ; Su ha HAN ; Jacob LEE
Journal of Korean Medical Science 2024;39(18):e151-
Background:
Catheter-associated urinary tract infections (CAUTIs) account for a large proportion of healthcare-associated infections and have a significant impact on morbidity, length of hospital stay, and mortality. Adherence to the recommended infection prevention practices can effectively reduce the incidence of CAUTIs. This study aimed to assess the characteristics of CAUTIs and the efficacy of prevention programs across hospitals of various sizes.
Methods:
Intervention programs, including training, surveillance, and monitoring, were implemented. Data on the microorganisms responsible for CAUTIs, urinary catheter utilization ratio, rate of CAUTIs per 1,000 device days, and factors associated with the use of indwelling catheters were collected from 2017 to 2019. The incidence of CAUTIs and associated data were compared between university hospitals and small- and medium-sized hospitals.
Results:
Thirty-two hospitals participated in the study, including 21 university hospitals and 11 small- and medium-sized hospitals. The microorganisms responsible for CAUTIs and their resistance rates did not differ between the two groups. In the first quarter of 2018, the incidence rate was 2.05 infections/1,000 device-days in university hospitals and 1.44 infections/1,000 device-days in small- and medium-sized hospitals. After implementing interventions, the rate gradually decreased in the first quarter of 2019, with 1.18 infections/1,000 device-days in university hospitals and 0.79 infections/1,000 device-days in small- and medium-sized hospitals. However, by the end of the study, the infection rate increased to 1.74 infections/1,000 device-days in university hospitals and 1.80 infections/1,000 device-days in small- and medium-sized hospitals.
Conclusion
We implemented interventions to prevent CAUTIs and evaluated their outcomes. The incidence of these infections decreased in the initial phases of the intervention when adequate support and personnel were present. The rate of these infections may be reduced by implementing active interventions such as consistent monitoring and adherence to guidelines for preventing infections.