1.Advances in research of Musashi2 in solid tumors.
Ying Gui YANG ; Min ZHAO ; Teng Teng DING ; Chu Ping NI ; Qing You ZHENG ; Xin LI
Journal of Southern Medical University 2022;42(3):448-456
RNA binding protein (RBP) plays a key role in gene regulation and participate in RNA translation, modification, splicing, transport and other important biological processes. Studies have shown that abnormal expression of RBP is associated with a variety of diseases. The Musashi (Msi) family of mammals is an evolutionarily conserved and powerful RBP, whose members Msi1 and Msi2 play important roles in the regulation of stem cell activity and tumor development. The Msi family members regulate a variety of biological processes by binding and regulating mRNA translation, stability and downstream cell signaling pathways, and among them, Msi2 is closely related to embryonic growth and development, maintenance of tumor stem cells and development of hematological tumors. Accumulating evidence has shown that Msi2 also plays a crucial role in the development of solid tumors, mainly by affecting the proliferation, invasion, metastasis and drug resistance of tumors, involving Wnt/β-catenin, TGF-β/SMAD3, Akt/mTOR, JAK/STAT, Numb and their related signaling pathways (Notch, p53, and Hedgehog pathway). Preclinical studies of Msi2 gene as a therapeutic target for tumor have achieved preliminary results. This review summarizes the molecular structure, physiological function, role of Msi2 in the development and progression of various solid tumors and the signaling pathways involved.
Animals
;
Hedgehog Proteins
;
Mammals/metabolism*
;
Neoplasms/genetics*
;
Neoplastic Stem Cells
;
RNA-Binding Proteins/metabolism*
;
Signal Transduction
2.Research advances on signaling pathways affecting sweat gland development and their involvement in the reconstitution of sweat adenoid cells in vitro.
Dong Hao LANG ; Te BA ; Sheng Jun CAO ; Fang LI ; Hang DONG ; Jun Liang LI ; Ling Feng WANG
Chinese Journal of Burns 2022;38(2):195-200
The damage of sweat glands in patients with extensive deep burns results in the loss of thermoregulation, which seriously affects the quality of life of patients. At present, there are many researches on the repair of sweat gland function, but the mechanism of human sweat gland development has not been fully clarified. More and more studies have shown that the cascaded pathways of Wnt/β-catenin, ecto- dysplasin A/ectodysplasin A receptor/nuclear factor-κB, sonic hedgehog, and forkhead box transcription factor jointly affect the development of sweat glands, and it has been reported that the cascaded signaling pathways can be used to achieve the reconstruction of sweat adenoid cells in vitro. This article reviews the signaling pathways that affect the development of sweat glands and their involvement in the reconstruction of sweat adenoid cells in vitro.
Adenoids/metabolism*
;
Hedgehog Proteins/metabolism*
;
Humans
;
Quality of Life
;
Signal Transduction
;
Sweat/metabolism*
;
Sweat Glands/physiology*
3.Transforming growth factor-β1 induces transformation of rat meningeal fibroblasts into myofibroblasts by upregulating Shh signaling.
Jun WEN ; Hui Min ZHU ; Xue Mei LI ; Jia Gui HUANG ; Yue CHEN ; Qin YANG
Journal of Southern Medical University 2022;42(2):250-255
OBJECTIVE:
To investigate the effect of TGF-β1 on Shh signaling pathway during the transformation of meningeal fibroblasts into myofibroblasts.
METHODS:
Primary meningeal fibroblasts were isolated from neonatal (24 h) SD rats and purified using type Ⅳ collagenase. The isolated cells were treated with 10 ng/mL TGF-β1 alone or in combination with 20 μmol/L SB-431542 (a TGF-β1 receptor inhibitor) for 72 h, and the changes in proliferation and migration abilities of the fibroblasts were assessed with CCK-8 assay and cell scratch test. The expression of fibronectin (Fn) was detected with immunofluorescence assay, and Western blotting was performed to examine the expressions of Fn, α-SMA and Shh protein in the cells; the expression of Shh mRNA was detected with real-time fluorescence quantitative PCR.
RESULTS:
TGF-β1 treatment obviously enhanced the proliferation and migration of primary meningeal fibroblasts (P < 0.05), and promoted the transformation of meningeal fibroblasts into myofibroblasts and the secretion of Fn (P < 0.05). TGF-β1 treatment also upregulated the expression of Shh at both protein and mRNA levels (P < 0.05). Treatment with SB-431542 partially blocked the effect of TGF-β1 on the transformation of meningeal fibroblasts (P < 0.05).
CONCLUSION
TGF-β1 can induce the transformation of meningeal fibroblasts into myofibroblasts by up-regulating Shh expression in Sonic Hedgehog signaling pathway.
Animals
;
Fibroblasts/metabolism*
;
Hedgehog Proteins
;
Myofibroblasts/metabolism*
;
Rats
;
Rats, Sprague-Dawley
;
Transforming Growth Factor beta1/metabolism*
4.Primary cilia support cartilage regeneration after injury.
Dike TAO ; Lei ZHANG ; Yunpeng DING ; Na TANG ; Xiaoqiao XU ; Gongchen LI ; Pingping NIU ; Rui YUE ; Xiaogang WANG ; Yidong SHEN ; Yao SUN
International Journal of Oral Science 2023;15(1):22-22
In growing children, growth plate cartilage has limited self-repair ability upon fracture injury always leading to limb growth arrest. Interestingly, one type of fracture injuries within the growth plate achieve amazing self-healing, however, the mechanism is unclear. Using this type of fracture mouse model, we discovered the activation of Hedgehog (Hh) signaling in the injured growth plate, which could activate chondrocytes in growth plate and promote cartilage repair. Primary cilia are the central transduction mediator of Hh signaling. Notably, ciliary Hh-Smo-Gli signaling pathways were enriched in the growth plate during development. Moreover, chondrocytes in resting and proliferating zone were dynamically ciliated during growth plate repair. Furthermore, conditional deletion of the ciliary core gene Ift140 in cartilage disrupted cilia-mediated Hh signaling in growth plate. More importantly, activating ciliary Hh signaling by Smoothened agonist (SAG) significantly accelerated growth plate repair after injury. In sum, primary cilia mediate Hh signaling induced the activation of stem/progenitor chondrocytes and growth plate repair after fracture injury.
Mice
;
Animals
;
Hedgehog Proteins/genetics*
;
Receptors, G-Protein-Coupled/metabolism*
;
Cilia/metabolism*
;
Cartilage/metabolism*
;
Regeneration
6.The Hedgehog signalling pathway in bone formation.
Jing YANG ; Philipp ANDRE ; Ling YE ; Ying-Zi YANG
International Journal of Oral Science 2015;7(2):73-79
The Hedgehog (Hh) signalling pathway plays many important roles in development, homeostasis and tumorigenesis. The critical function of Hh signalling in bone formation has been identified in the past two decades. Here, we review the evolutionarily conserved Hh signalling mechanisms with an emphasis on the functions of the Hh signalling pathway in bone development, homeostasis and diseases. In the early stages of embryonic limb development, Sonic Hedgehog (Shh) acts as a major morphogen in patterning the limb buds. Indian Hedgehog (Ihh) has an essential function in endochondral ossification and induces osteoblast differentiation in the perichondrium. Hh signalling is also involved intramembrane ossification. Interactions between Hh and Wnt signalling regulate cartilage development, endochondral bone formation and synovial joint formation. Hh also plays an important role in bone homeostasis, and reducing Hh signalling protects against age-related bone loss. Disruption of Hh signalling regulation leads to multiple bone diseases, such as progressive osseous heteroplasia. Therefore, understanding the signalling mechanisms and functions of Hh signalling in bone development, homeostasis and diseases will provide important insights into bone disease prevention, diagnoses and therapeutics.
Animals
;
Bone Development
;
Bone Diseases
;
metabolism
;
Hedgehog Proteins
;
metabolism
;
Homeostasis
;
Humans
;
Signal Transduction
7.Drug resistance of leukemic stem cells mediated by hedgehog signaling pathway.
Ping-Fang XIA ; Qi PENG ; Miao-Rong SHE
Journal of Experimental Hematology 2013;21(1):250-253
Drug resistance and relapse are the major challenge for current treatment of acute leukemia. It is critical for ultimately curing leukemia to overcome chemoresistance of leukemic stem cells (LSC) and to eradicate LSC. Recent studies have found that abnormal activated Hedgehog (HH) signaling pathway plays an important role in a wide variety of tumors and regulates multi-drug resistance of LSC. This review briefly summarizes the molecular mechanism of HH signal pathway inducing drug resistance of LSC and leading to novel strategies for eradicating LSC.
Drug Resistance, Neoplasm
;
Hedgehog Proteins
;
metabolism
;
Humans
;
Leukemia
;
metabolism
;
Neoplastic Stem Cells
;
drug effects
;
Signal Transduction
8.The expression of sonic hedgehog in rat vein grafts.
Feng-he LI ; Shi-jie XIN ; Lin-ping HUI ; Ze-shi CUI ; Lei ZHAO ; Yu YANG ; Jian ZHANG ; Zhi-quan DUAN
Chinese Journal of Surgery 2010;48(7):539-542
OBJECTIVETo study the expression of cell cycle related factor sonic hedgehog (SHH) in autogenous vein graft and its relation with neointima formation.
METHODSAutogenous vein graft model were established in 24 male Wistar rats of 8 weeks old and 140 g weight, by transplanting the left jugular vein to intra renal abdominal aorta with microsurgical technique. Graft veins were harvested at 14 d and 28 d after transplantation. The immunohistochemistry and Western blot were used to detect the SHH and PCNA expression in the vein graft. At the same time SHH mRNA was measured by quantitative real-time PCR. The opposite normal veins served as control.
RESULTSHistological staining showed that the percent of SHH+ cells was only (2.0 +/- 0.5)% in the normal vein, but was much more in the vein graft after surgery, as (39.4 +/- 0.4)% and (63.0 +/- 0.3)% respectively (P < 0.01). The expression of SHH and PCNA were both elevated in the vein graft. There was a positive correlation between them which indicated by Western blot (r = 0.808, P < 0.01). The SHH mRNA content also increased in vein graft to 9.5 and 23.8 folds of that in control.
CONCLUSIONSHH is upregulated in autogenous vein grafts and may correlated with the proliferation of vascular smooth muscle cells.
Animals ; Hedgehog Proteins ; metabolism ; Male ; Neointima ; metabolism ; Rats ; Rats, Wistar ; Transplantation, Autologous ; Tunica Intima ; metabolism ; Veins ; metabolism ; pathology ; transplantation
9.Research progress in mechanism of Chinese herbal compounds and monomers in delaying lumbar intervertebral disc degeneration.
Kai SUN ; Li-Guo ZHU ; Xu WEI ; He YIN ; Jia-Wen ZHAN ; Xun-Lu YIN ; Tao HAN
China Journal of Chinese Materia Medica 2022;47(9):2400-2408
Traditional Chinese medicine has unique advantages in the treatment of degenerative bone and joint diseases, and its widely used in clinical practice. In recent years, many scholars have conducted a large number of basic studies on the delay of intervertebral disc degeneration by herbal compound and monomeric components from different perspectives. In order to further elucidate its mechanism of action, this paper summarizes the in vivo and in vitro experimental studies conducted at the level of both herbal compound and single components, respectively, in order to provide references for the basic research on the treatment of lumbar intervertebral disc degeneration by Chinese medicine. A summary shows that commonly used herbal compound prescriptions include both classical prescriptions such as Duhuo Jisheng Decoction, as well as clinical experience prescriptions such as Yiqi Huoxue Recipe. Angelicae Sinensis Radix, Chuanxiong Rhizoma, Rehmanniae Radix Praeparata, Achyranthis Bidentatae Radix, and Eucommiae Cortex were used most frequently. Tonic for deficiency and blood stasis activators were used most frequently. The most utilized monomeric components include icariin, ginsenoside Re, salvianolic acid B and aucubin. The main molecular mechanisms by which herbal compound and monomeric components delay of lumbar intervertebral disc degeneration include improving the intervertebral disc microenvironment, promoting the synthesis of aggregated proteoglycans and type Ⅱ collagen in the intervertebral disc, reducing the degradation of the extracellular matrix, and inhibiting apoptosis in the nucleus pulposus cells, etc. The main signaling pathways involved include Wnt/β-catenin signaling pathway, MAPK-related signaling pathway, mTOR signaling pathway, Fas/FasL signaling pathway, PI3 K/Akt signaling pathway, NF-κB signaling pathway, JAK/STAT signaling pathway, and hedgehog signaling pathway, etc.
China
;
Drugs, Chinese Herbal/therapeutic use*
;
Hedgehog Proteins/metabolism*
;
Humans
;
Intervertebral Disc Degeneration/metabolism*
;
Nucleus Pulposus/metabolism*
;
Wnt Signaling Pathway
10.Expression of MicroRNAs of An Interneuron Precursor Cell Line GE6 in Various Differentiation Conditions.
Xinxu GE ; Qian LIU ; Shu YIN ; Hedong LI
Journal of Biomedical Engineering 2015;32(6):1273-1278
The purpose of this study was to identify specific microRNAs (miRNAs) during differentiation and maturation of interneurons and to predict their possible functions by analyzing the expression of miRNAs during in vitro differentiation of the rat interneuron precursor cell line GE6. In the experiment, the interneuron precursor cell line GE6 was cultured under three different conditions, i. e. the first was that had not added growth factors and the normal differentiation cultured for 4 days (Ge6_4d); the second was that cultured with bone morphogenetic protein-2 (BMP2) for 4 days (Ge6_bmp2); and the third was that cultured with sonic hedgehog (SHH) for 4 days (Ge6_ shh). In addition, another group of undifferentiated GE6 (Ge6_u) was applied as a control. We found in this study that the expression levels of a large number of miRNAs changed significantly during GE6 differentiation. The expression levels of miR-710, miR-290-5p and miR-3473 increased in the GE6 cells with secreted factor BMP2. These miRNAs may play important regulatory roles during interneuron differentiation.
Animals
;
Bone Morphogenetic Protein 2
;
chemistry
;
Cell Differentiation
;
Cell Line
;
Hedgehog Proteins
;
chemistry
;
Interneurons
;
cytology
;
metabolism
;
MicroRNAs
;
metabolism
;
Rats