1.Genetic counseling for hearing loss today.
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2024;38(1):1-7
Genetic counseling for hearing loss today originated from decoding the genetic code of hereditary hearing loss, which serves as an effective strategy for preventing hearing loss and constitutes a crucial component of the diagnostic and therapeutic framework. This paper described the main principles and contents of genetic counseling for hearing loss, the key points of counseling across various genetic models and its application in tertiary prevention strategies targeting hearing impairment. The prospects of an AI-assisted genetic counseling decision system and the envisions of genetic counseling in preventing hereditary hearing loss were introduced. Genetic counseling for hearing loss today embodies the hallmark of a new era, which is inseparable from the advancements in science and technology, and will undoubtedly contribute to precise gene intervention!
Humans
;
Genetic Counseling
;
Deafness/genetics*
;
Hearing Loss/diagnosis*
;
Hearing Loss, Sensorineural/genetics*
3.Genetic characteristic analysis of slight-to-moderate sensorineural hearing loss in children.
Rui ZHOU ; Jing GUAN ; Qiuju WANG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2024;38(1):18-22
Objective:To analyze genetic factors and phenotype characteristics in pediatric population with slight-to-moderate sensorineural hearing loss. Methods:Children with slight-to-moderate sensorineural hearing loss of and their parents, enrolled from the Chinese Deafness Genome Project, were studied. Hearing levels were assessed using pure tone audiometry, behavioral audiometry, auditory steady state response(ASSR), auditory brainstem response(ABR) thresholds, and deformed partial otoacoustic emission(DPOAE). Classification of hearing loss is according to the 2022 American College of Medical Genetics and Genomics(ACMG) Clinical Practice Guidelines for Hearing Loss. Whole exome sequencing(WES) and deafness gene Panel testing were performed on peripheral venous blood from probands and validations were performed on their parents by Sanger sequencing. Results:All 134 patients had childhood onset, exhibiting bilateral symmetrical slight-to-moderate sensorineural hearing loss, as indicated by audiological examinations. Of the 134 patients, 29(21.6%) had a family history of hearing loss, and the rest were sporadic patients. Genetic causative genes were identified in 66(49.3%) patients. A total of 11 causative genes were detected, of which GJB2 was causative in 34 cases(51.5%), STRC in 10 cases(15.1%), MPZL2 gene in six cases(9.1%), and USH2A in five cases(7.6%).The most common gene detected in slight-to-moderate hearing loss was GJB2, with c. 109G>A homozygous mutation found in 16 cases(47.1%) and c. 109G>A compound heterozygous mutation in 9 cases(26.5%). Conclusion:This study provides a crucial genetic theory reference for early screening and detection of mild to moderate hearing loss in children, highlighting the predominance of recessive inheritance and the significance of gene like GJB2, STRC, MPZL2, USH2A.
Humans
;
Child
;
Connexins/genetics*
;
Connexin 26/genetics*
;
Hearing Loss, Sensorineural/diagnosis*
;
Mutation
;
Usher Syndromes
;
Hearing Loss, Bilateral
;
Audiometry, Pure-Tone
;
Intercellular Signaling Peptides and Proteins
4.Splicing mutations of GSDME cause late-onset non-syndromic hearing loss.
Danyang LI ; Hongyang WANG ; Qiuju WANG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2024;38(1):30-37
Objective:To dentify the genetic and audiological characteristics of families affected by late-onset hearing loss due to GSDMEgene mutations, aiming to explore clinical characteristics and pathogenic mechanisms for providing genetic counseling and intervention guidance. Methods:Six families with late-onset hearing loss from the Chinese Deafness Genome Project were included. Audiological tests, including pure-tone audiometry, acoustic immittance, speech recognition scores, auditory brainstem response, and distortion product otoacoustic emission, were applied to evaluate the hearing levels of patients. Combining with medical history and physical examination to analyze the phenotypic differences between the probands and their family members. Next-generation sequencing was used to identify pathogenic genes in probands, and validations were performed on their relatives by Sanger sequencing. Pathogenicity analysis was performed according to the American College of Medical Genetics and Genomics Guidelines. Meanwhile, the pathogenic mechanisms of GSDME-related hearing loss were explored combining with domestic and international research progress. Results:Among the six families with late-onset hearing loss, a total of 30 individuals performed hearing loss. The onset of hearing loss in these families ranged from 10 to 50 years(mean age: 27.88±9.74 years). In the study, four splicing mutations of the GSDME were identified, including two novel variants: c. 991-7C>G and c. 1183+1G>T. Significantly, the c. 991-7C>G was a de novo variant. The others were previously reported variants: c. 991-1G>C and c. 991-15_991-13del, the latter was identified in three families. Genotype-phenotype correlation analysis revealed that probands with the c. 991-7C>G and c. 1183+1G>T performed a predominantly high-frequency hearing loss. The three families carrying the same mutation exhibited varying degrees of hearing loss, with an annual rate of hearing deterioration exceeding 0.94 dB HL/year. Furthermore, follow-up of interventions showed that four of six probands received intervention(66.67%), but the results of intervention varied. Conclusion:The study analyzed six families with late-onset non-syndromic hearing loss linked to GSDME mutations, identifying four splicing variants. Notably, c. 991-7C>G is the first reported de novo variant of GSDME globally. Audiological analysis revealed that the age of onset generally exceeded 10 years,with variable effectiveness of interventions.
Humans
;
Adolescent
;
Young Adult
;
Adult
;
Child
;
Hearing Loss, Sensorineural/diagnosis*
;
Deafness/genetics*
;
Mutation
;
Hearing Loss/genetics*
;
Pedigree
5.Research progress on hereditary endocrine and metabolic diseases associated with sensorineural hearing loss.
Fang CHEN ; Qinying ZHANG ; Qiujing ZHANG ; Qiuju WANG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2024;38(1):63-69
Hereditary endocrine and metabolic diseases , caused by genetic factors, exhibit complex and diverse symptoms, including the possibility of concurrent sensorineural deafness. Currently, there is a limited clinical understanding of hereditary endocrine and metabolic diseases that manifest with deafness, the pathogenesis remains unclear,and there is a lack of effective diagnostic and treatment methods. This article summarizes the research progress of hereditary endocrine and metabolic diseases complicated with deafness from the pathogenesis, clinical phenotype, diagnosis and treatment. Understanding the current research progress and integrating genetic analysis into clinical practice are crucial for accurate diagnosis and treatment, evaluating clinical efficacy, and providing effective genetic counseling for these diseases.
Humans
;
Deafness/genetics*
;
Hearing Loss, Sensorineural/diagnosis*
;
Phenotype
;
Metabolic Diseases/genetics*
;
Genetic Counseling
6.A case of sudden hearing loss combined with familial hyperlipidemia.
Hui ZHONG ; Xiaonan WU ; Jing GUAN ; Dayong WANG ; Qiuju WANG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2024;38(1):70-72
Hyperlipidemia is characterized by elevated levels of blood lipids. The clinical manifestations are mainly atherosclerosis caused by the deposition of lipids in the vascular endothelium. The link between abnormal lipid metabolism and sudden hearing loss remains unclear. This article presents a case study of sudden hearing loss accompanied by familial hyperlipidemia. Pure tone audiometry indicated intermediate frequency hearing loss in one ear. Laboratory tests showed abnormal lipid metabolism, and genetic examination identified a heterozygous mutation in theAPOA5 gene. Diagnosis: Sudden hearing loss; hypercholesterolemia. The patient responded well to pharmacological treatment. This paper aims to analyze and discuss thepotential connection between abnormal lipid metabolism and sudden hearing loss.
Humans
;
Audiometry, Pure-Tone
;
Deafness/complications*
;
Hearing Loss, Sensorineural/diagnosis*
;
Hearing Loss, Sudden/diagnosis*
;
Hyperlipidemias/complications*
;
Lipids
7.Clinical features of CAPOS syndrome caused by maternal ATP1A3 gene variation: a case report.
Yun GAO ; Fengjiao LI ; Rong LUO ; Guohui CHEN ; Danyang LI ; Dayong WANG ; Qiuju WANG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2024;38(1):73-76
CAPOS syndrome is an autosomal dominant neurological disorder caused by mutations in the ATP1A3 gene. Initial symptoms, often fever-induced, include recurrent acute ataxic encephalopathy in childhood, featuring cerebellar ataxia, optic atrophy, areflflexia, sensorineural hearing loss, and in some cases, pes cavus. This report details a case of CAPOS syndrome resulting from a maternal ATP1A3 gene mutation. Both the child and her mother exhibited symptoms post-febrile induction,including severe sensorineural hearing loss in both ears, ataxia, areflexia, and decreased vision. Additionally, the patient's mother presented with pes cavus. Genetic testing revealed a c. 2452G>A(Glu818Lys) heterozygous mutation in theATP1A3 gene in the patient . This article aims to enhance clinicians' understanding of CAPOS syndrome, emphasizing the case's clinical characteristics, diagnostic process, treatment, and its correlation with genotypeic findings.
Humans
;
Child
;
Female
;
Cerebellar Ataxia/diagnosis*
;
Talipes Cavus
;
Hearing Loss, Sensorineural/diagnosis*
;
Optic Atrophy/diagnosis*
;
Mutation
;
Phenotype
;
Sodium-Potassium-Exchanging ATPase/genetics*
;
Foot Deformities, Congenital
;
Reflex, Abnormal
8.Research on early warning model of the hearing loss of workers exposed to noise.
Hai Hui QI ; Yi Yi DU ; Yu TIAN ; Yong Wei WANG ; Li Ming QUAN ; Ding Lun ZHOU
Chinese Journal of Industrial Hygiene and Occupational Diseases 2023;41(1):47-51
Objective: To explore the change of hearing threshold of workers exposed to noise, establish an individual-based hearing loss early warning model, accurately and differentiated the health of workers exposed to noise. Methods: In September 2019, all physical examination data of 561 workers exposed to noise from an enterprise were collected since their employment. Three indicators of average hearing threshold of the better ear, namely, at high frequency, 4000 Hz and speech frequency, were constructed. The generalized estimating equation (GEE) was used to adjust gender and age and establish the warning model of each indicator. Finally, sensitive indicators and warning models were screened according to AUC and Yoden index. Results: Among the 561 workers exposed to noise, 26 (4.6%) workers had hearing loss. The sensitivity indicators were the average hearing threshold at speech frequency ≥20 dB, high frequency ≥30 dB and 4000 Hz ≥25 dB. The AUC of each index was 0.602, 0.794 and 0.804, and the Youden indexes were 0.204, 0.588 and 0.608, respectively. In GEE of hearing loss warning models, high-frequency hearing threshold ≥20 dB and 4000 Hz hearing threshold ≥25 dB were the optimal models, with AUC of 0.862. Conclusion: Combined with the changes of individual hearing threshold over the years, can accurately assess the risk of individual hearing loss of workers exposed to noise.
Humans
;
Hearing Loss, Noise-Induced/diagnosis*
;
Noise, Occupational/adverse effects*
;
Audiometry
;
Deafness
;
Employment
;
Occupational Exposure/adverse effects*
;
Occupational Diseases/diagnosis*
9.Analysis of clinical phenotype and genetic variants among four Chinese pedigrees affected with Waardenburg syndrome.
Lulu WANG ; Lu MAO ; Hongen XU ; Shuping SUN ; Bin ZUO ; Wei LU
Chinese Journal of Medical Genetics 2023;40(6):661-667
OBJECTIVE:
To explore the genetic basis for four Chinese pedigrees affected with Waardenburg syndrome (WS).
METHODS:
Four WS probands and their pedigree members who had presented at the First Affiliated Hospital of Zhengzhou University between July 2021 and March 2022 were selected as the study subjects. Proband 1, a 2-year-and-11-month female, had blurred speech for over 2 years. Proband 2, a 10-year-old female, had bilateral hearing loss for 8 years. Proband 3, a 28-year-old male, had right side hearing loss for over 10 years. Proband 4, a 2-year-old male, had left side hearing loss for one year. Clinical data of the four probands and their pedigree members were collected, and auxiliary examinations were carried out. Genomic DNA was extracted from peripheral blood samples and subjected to whole exome sequencing. Candidate variants were verified by Sanger sequencing.
RESULTS:
Proband 1, with profound bilateral sensorineural hearing loss, blue iris and dystopia canthorum, was found to have harbored a heterozygous c.667C>T (p.Arg223Ter) nonsense variant of the PAX3 gene, which was inherited from her father. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), the variant was classified as pathogenic (PVS1+PM2_Supporting+PP4), and the proband was diagnosed with WS type I. Proband 2, with moderate sensorineural hearing loss on the right side and severe sensorineural hearing loss on the left side, has harbored a heterozygous frameshifting c.1018_1022del (p.Val340SerfsTer60) variant of the SOX10 gene. Neither of her parents has harbored the same variant. Based on the ACMG guidelines, it was classified as pathogenic (PVS1+PM2_Supporting+PP4+PM6), and the proband was diagnosed with WS type II. Proband 3, with profound sensorineural hearing loss on the right side, has harbored a heterozygous c.23delC (p.Ser8TrpfsTer5) frameshifting variant of the SOX10 gene. Based on the ACMG guidelines, it was classified as pathogenic (PVS1+PM2_Supporting+PP4), and the proband was diagnosed with WS type II. Proband 4, with profound sensorineural hearing loss on the left side, has harbored a heterozygous c.7G>T (p.Glu3Ter) nonsense variant of the MITF gene which was inherited from his mother. Based on the ACMG guidelines, the variant was classified as pathogenic (PVS1+PM2_Supporting+PP4), and the proband was diagnosed with WS type II.
CONCLUSION
By genetic testing, the four probands were all diagnosed with WS. Above finding has facilitated molecular diagnosis and genetic counseling for their pedigrees.
Female
;
Humans
;
Male
;
Deafness
;
East Asian People
;
Hearing Loss, Sensorineural/genetics*
;
Mutation
;
Pedigree
;
Phenotype
;
Waardenburg Syndrome/diagnosis*
10.Genetic testing and prenatal diagnosis for a Chinese pedigree affected with Waardenburg syndrome type 4C due to heterozygous deletion of SOX10 gene.
Jingjing LI ; Hongfei KANG ; Xiangdong KONG
Chinese Journal of Medical Genetics 2023;40(11):1367-1372
OBJECTIVE:
To explore the genetic basis for a Chinese pedigree featuring congenital profound syndromic deafness and chronic constipation, and provide prenatal diagnosis for a high-risk fetus.
METHODS:
Whole-exome sequencing was carried out to analyze the sequences of genes associated with hereditary deafness, and multiplex ligation-dependent probe amplification (MLPA) was used to verify the candidate variant in the proband's parents and the fetus.
RESULTS:
The proband was found to have harbored a heterozygous deletion of SOX10, a pathogenic gene associated with Waardenburg syndrome type 4C (WS4C). The same deletion was found in her mother (with profound syndromic deafness and chronic constipation) and the fetus, but not in her father with normal hearing. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG) and Association for Molecular Pathology (AMP), the SOX10 gene deletion was predicted to be a pathogenic variant (PVS1+PM2_Supporting+PP1+PP4).
CONCLUSION
The pedigree was diagnosed with WS4C, which has conformed to an autosomal dominant inheritance. Deletion of the entire SOX10 gene, as a loss-of-function variant, probably underlay its pathogenesis. Above finding has facilitated genetic counseling and prenatal diagnosis for this family.
Humans
;
Female
;
Pregnancy
;
Pedigree
;
Waardenburg Syndrome/genetics*
;
East Asian People
;
Genetic Testing
;
Prenatal Diagnosis
;
Hearing Loss, Sensorineural/genetics*
;
Deafness/genetics*
;
Mothers
;
Constipation/genetics*
;
Mutation
;
SOXE Transcription Factors/genetics*

Result Analysis
Print
Save
E-mail