1.Targeted Next-Generation Sequencing of Plasma CellFree DNA in Korean Patients with Hepatocellular Carcinoma
Hyojin CHAE ; Pil Soo SUNG ; Hayoung CHOI ; Ahlm KWON ; Dain KANG ; Yonggoo KIM ; Myungshin KIM ; Seung Kew YOON
Annals of Laboratory Medicine 2021;41(2):198-206
Background:
Hepatocellular carcinoma (HCC) is the second-most-common cause of cancer-related deaths worldwide, and an accurate and non-invasive biomarker for the early detection and monitoring of HCC is required. We assessed pathogenic variants of HCC driver genes in cell-free DNA (cfDNA) from HCC patients who had not undergone systemic therapy.
Methods:
Plasma cfDNA was collected from 20 HCC patients, and deep sequencing was performed using a customized cfDNA next-generation sequencing panel, targeting the major HCC driver genes (TP53, CTNNB1, TERT) that incorporates molecular barcoding.
Results:
In 13/20 (65%) patients, we identified at least one pathogenic variant of two major HCC driver genes (TP53 and CTNNB1), including 16 variants of TP53 and nine variants of CTNNB1. The TP53 and CTNNB1 variants showed low allele frequencies, with median values of 0.17% (range: 0.06%–6.99%) and 0.07% (range: 0.05%–0.96%), respectively. However, the molecular coverage of variants was sufficient, with median values of 5,543 (range: 2,317–9,088) and 7,568 (range: 2,400–9,633) for TP53 and CTNNB1 variants, respectively.
Conclusions
Our targeted DNA sequencing successfully identified low-frequency pathogenic variants in the cfDNA from HCC patients by achieving high coverage of unique molecular families. Our results support the utility of cfDNA analysis to identify somatic gene variants in HCC patients.
2.Genetic Profiles of Korean Patients With Glucose-6-Phosphate Dehydrogenase Deficiency.
Jaewoong LEE ; Joonhong PARK ; Hayoung CHOI ; Jiyeon KIM ; Ahlm KWON ; Woori JANG ; Hyojin CHAE ; Myungshin KIM ; Yonggoo KIM ; Jae Wook LEE ; Nack Gyun CHUNG ; Bin CHO
Annals of Laboratory Medicine 2017;37(2):108-116
BACKGROUND: We describe the genetic profiles of Korean patients with glucose-6-phosphate dehydrogenase (G6PD) deficiencies and the effects of G6PD mutations on protein stability and enzyme activity on the basis of in silico analysis. METHODS: In parallel with a genetic analysis, the pathogenicity of G6PD mutations detected in Korean patients was predicted in silico. The simulated effects of G6PD mutations were compared to the WHO classes based on G6PD enzyme activity. Four previously reported mutations and three newly diagnosed patients with missense mutations were estimated. RESULTS: One novel mutation (p.Cys385Gly, labeled G6PD Kangnam) and two known mutations [p.Ile220Met (G6PD São Paulo) and p.Glu416Lys (G6PD Tokyo)] were identified in this study. G6PD mutations identified in Koreans were also found in Brazil (G6PD São Paulo), Poland (G6PD Seoul), United States of America (G6PD Riley), Mexico (G6PD Guadalajara), and Japan (G6PD Tokyo). Several mutations occurred at the same nucleotide, but resulted in different amino acid residue changes in different ethnic populations (p.Ile380 variant, G6PD Calvo Mackenna; p.Cys385 variants, Tomah, Madrid, Lynwood; p.Arg387 variant, Beverly Hills; p.Pro396 variant, Bari; and p.Pro396Ala in India). On the basis of the in silico analysis, Class I or II mutations were predicted to be highly deleterious, and the effects of one Class IV mutation were equivocal. CONCLUSIONS: The genetic profiles of Korean individuals with G6PD mutations indicated that the same mutations may have arisen by independent mutational events, and were not derived from shared ancestral mutations. The in silico analysis provided insight into the role of G6PD mutations in enzyme function and stability.
Asian Continental Ancestry Group/*genetics
;
Child
;
Child, Preschool
;
DNA/chemical synthesis/genetics/metabolism
;
Exons
;
Glucosephosphate Dehydrogenase/chemistry/*genetics/metabolism
;
Glucosephosphate Dehydrogenase Deficiency/*genetics/pathology
;
Humans
;
Male
;
Mutation, Missense
;
Polymorphism, Genetic
;
Protein Structure, Tertiary
;
Republic of Korea
;
Sequence Analysis, DNA
3.Hepatocellular carcinoma and cancer-related mortality after kidney transplantation with rituximab treatment
Hayoung LEE ; Young Hoon KIM ; Seong Jun LIM ; Youngmin KO ; Sung SHIN ; Joo Hee JUNG ; Chung BAEK ; Hyosang KIM ; Su-Kil PARK ; Hyunwook KWON
Annals of Surgical Treatment and Research 2022;102(1):55-63
Purpose:
There are increased therapeutic usages of rituximab in kidney transplantation (KT). However, few studies have evaluated the effect of rituximab on cancer development following KT. This study aimed to evaluate the effect of rituximab on the cancer occurrence and mortality rate according to each type of cancer.
Methods:
Five thousand consecutive recipients who underwent KT at our center were divided into era1 (1990–2007) and era2-rit– (2008–2018), and era2-rit+ (2008–2018) groups. The era2-rit+ group included patients who received single-dose rituximab (200–500 mg) as a desensitization treatment 1–2 weeks before KT.
Results:
The 5-year incidence rates of malignant tumors after KT were 3.1%, 4.3%, and 3.5% in the era1, era2-rit–, and era2-rit+ group, respectively. The overall incidence rate of cancer after transplantation among the 3 study groups showed no significant difference (P = 0.340). The overall cancer-related mortality rate was 17.1% (53 of 310). Hepatocellular carcinoma (HCC) had the highest mortality rate (61.5%) and relative risk of cancer-related death (hazard ratio, 8.29; 95% confidence interval, 2.40–28.69; P = 0.001). However, we found no significant association between rituximab and the incidence of any malignancy.
Conclusion
Our results suggest that single-dose rituximab for desensitization may not increase the risk of malignant disease or cancer-related mortality in KT recipients. HCC was associated with the highest risk of cancer-related mortality in an endemic area of HBV infection.
4.Construction and validation of a synthetic phage-displayed nanobody library
Minju KIM ; Xuelian BAI ; Hyewon IM ; Jisoo YANG ; Youngju KIM ; Minjoo MJ KIM ; Yeonji OH ; Yuna JEON ; Hayoung KWON ; Seunghyun LEE ; Chang-Han LEE
The Korean Journal of Physiology and Pharmacology 2024;28(5):457-467
Nanobodies derived from camelids and sharks offer unique advantages in therapeutic applications due to their ability to bind to epitopes that were previously inaccessible. Traditional methods of nanobody development face challenges such as ethical concerns and antigen toxicity. Our study presents a synthetic, phagedisplayed nanobody library using trinucleotide-directed mutagenesis technology, which allows precise amino acid composition in complementarity-determining regions (CDRs), with a focus on CDR3 diversity. This approach avoids common problems such as frameshift mutations and stop codon insertions associated with other synthetic antibody library construction methods. By analyzing FDA-approved nanobodies and Protein Data Bank sequences, we designed sub-libraries with different CDR3 lengths and introduced amino acid substitutions to improve solubility. The validation of our library through the successful isolation of nanobodies against targets such as PD-1, ATXN1 and STAT3 demonstrates a versatile and ethical platform for the development of high specificity and affinity nanobodies and represents a significant advance in biotechnology.
5.Construction and validation of a synthetic phage-displayed nanobody library
Minju KIM ; Xuelian BAI ; Hyewon IM ; Jisoo YANG ; Youngju KIM ; Minjoo MJ KIM ; Yeonji OH ; Yuna JEON ; Hayoung KWON ; Seunghyun LEE ; Chang-Han LEE
The Korean Journal of Physiology and Pharmacology 2024;28(5):457-467
Nanobodies derived from camelids and sharks offer unique advantages in therapeutic applications due to their ability to bind to epitopes that were previously inaccessible. Traditional methods of nanobody development face challenges such as ethical concerns and antigen toxicity. Our study presents a synthetic, phagedisplayed nanobody library using trinucleotide-directed mutagenesis technology, which allows precise amino acid composition in complementarity-determining regions (CDRs), with a focus on CDR3 diversity. This approach avoids common problems such as frameshift mutations and stop codon insertions associated with other synthetic antibody library construction methods. By analyzing FDA-approved nanobodies and Protein Data Bank sequences, we designed sub-libraries with different CDR3 lengths and introduced amino acid substitutions to improve solubility. The validation of our library through the successful isolation of nanobodies against targets such as PD-1, ATXN1 and STAT3 demonstrates a versatile and ethical platform for the development of high specificity and affinity nanobodies and represents a significant advance in biotechnology.
6.Construction and validation of a synthetic phage-displayed nanobody library
Minju KIM ; Xuelian BAI ; Hyewon IM ; Jisoo YANG ; Youngju KIM ; Minjoo MJ KIM ; Yeonji OH ; Yuna JEON ; Hayoung KWON ; Seunghyun LEE ; Chang-Han LEE
The Korean Journal of Physiology and Pharmacology 2024;28(5):457-467
Nanobodies derived from camelids and sharks offer unique advantages in therapeutic applications due to their ability to bind to epitopes that were previously inaccessible. Traditional methods of nanobody development face challenges such as ethical concerns and antigen toxicity. Our study presents a synthetic, phagedisplayed nanobody library using trinucleotide-directed mutagenesis technology, which allows precise amino acid composition in complementarity-determining regions (CDRs), with a focus on CDR3 diversity. This approach avoids common problems such as frameshift mutations and stop codon insertions associated with other synthetic antibody library construction methods. By analyzing FDA-approved nanobodies and Protein Data Bank sequences, we designed sub-libraries with different CDR3 lengths and introduced amino acid substitutions to improve solubility. The validation of our library through the successful isolation of nanobodies against targets such as PD-1, ATXN1 and STAT3 demonstrates a versatile and ethical platform for the development of high specificity and affinity nanobodies and represents a significant advance in biotechnology.
7.Construction and validation of a synthetic phage-displayed nanobody library
Minju KIM ; Xuelian BAI ; Hyewon IM ; Jisoo YANG ; Youngju KIM ; Minjoo MJ KIM ; Yeonji OH ; Yuna JEON ; Hayoung KWON ; Seunghyun LEE ; Chang-Han LEE
The Korean Journal of Physiology and Pharmacology 2024;28(5):457-467
Nanobodies derived from camelids and sharks offer unique advantages in therapeutic applications due to their ability to bind to epitopes that were previously inaccessible. Traditional methods of nanobody development face challenges such as ethical concerns and antigen toxicity. Our study presents a synthetic, phagedisplayed nanobody library using trinucleotide-directed mutagenesis technology, which allows precise amino acid composition in complementarity-determining regions (CDRs), with a focus on CDR3 diversity. This approach avoids common problems such as frameshift mutations and stop codon insertions associated with other synthetic antibody library construction methods. By analyzing FDA-approved nanobodies and Protein Data Bank sequences, we designed sub-libraries with different CDR3 lengths and introduced amino acid substitutions to improve solubility. The validation of our library through the successful isolation of nanobodies against targets such as PD-1, ATXN1 and STAT3 demonstrates a versatile and ethical platform for the development of high specificity and affinity nanobodies and represents a significant advance in biotechnology.
8.Construction and validation of a synthetic phage-displayed nanobody library
Minju KIM ; Xuelian BAI ; Hyewon IM ; Jisoo YANG ; Youngju KIM ; Minjoo MJ KIM ; Yeonji OH ; Yuna JEON ; Hayoung KWON ; Seunghyun LEE ; Chang-Han LEE
The Korean Journal of Physiology and Pharmacology 2024;28(5):457-467
Nanobodies derived from camelids and sharks offer unique advantages in therapeutic applications due to their ability to bind to epitopes that were previously inaccessible. Traditional methods of nanobody development face challenges such as ethical concerns and antigen toxicity. Our study presents a synthetic, phagedisplayed nanobody library using trinucleotide-directed mutagenesis technology, which allows precise amino acid composition in complementarity-determining regions (CDRs), with a focus on CDR3 diversity. This approach avoids common problems such as frameshift mutations and stop codon insertions associated with other synthetic antibody library construction methods. By analyzing FDA-approved nanobodies and Protein Data Bank sequences, we designed sub-libraries with different CDR3 lengths and introduced amino acid substitutions to improve solubility. The validation of our library through the successful isolation of nanobodies against targets such as PD-1, ATXN1 and STAT3 demonstrates a versatile and ethical platform for the development of high specificity and affinity nanobodies and represents a significant advance in biotechnology.
9.Chromosomal Microarray Analysis as a First-Tier Clinical Diagnostic Test in Patients With Developmental Delay/Intellectual Disability, Autism Spectrum Disorders, and Multiple Congenital Anomalies: A Prospective Multicenter Study in Korea
Woori JANG ; Yonggoo KIM ; Eunhee HAN ; Joonhong PARK ; Hyojin CHAE ; Ahlm KWON ; Hayoung CHOI ; Jiyeon KIM ; Jung Ok SON ; Sang Jee LEE ; Bo Young HONG ; Dae Hyun JANG ; Ji Yoon HAN ; Jung Hyun LEE ; So Young KIM ; In Goo LEE ; In Kyung SUNG ; Yeonsook MOON ; Myungshin KIM ; Joo Hyun PARK
Annals of Laboratory Medicine 2019;39(3):299-310
BACKGROUND: To validate the clinical application of chromosomal microarray analysis (CMA) as a first-tier clinical diagnostic test and to determine the impact of CMA results on patient clinical management, we conducted a multicenter prospective study in Korean patients diagnosed as having developmental delay/intellectual disability (DD/ID), autism spectrum disorders (ASD), and multiple congenital anomalies (MCA). METHODS: We performed both CMA and G-banding cytogenetics as the first-tier tests in 617 patients. To determine whether the CMA results directly influenced treatment recommendations, the referring clinicians were asked to complete a 39-item questionnaire for each patient separately after receiving the CMA results. RESULTS: A total of 122 patients (19.8%) had abnormal CMA results, with either pathogenic variants (N=65) or variants of possible significance (VPS, N=57). Thirty-five well-known diseases were detected: 16p11.2 microdeletion syndrome was the most common, followed by Prader-Willi syndrome, 15q11-q13 duplication, Down syndrome, and Duchenne muscular dystrophy. Variants of unknown significance (VUS) were discovered in 51 patients (8.3%). VUS of genes putatively associated with developmental disorders were found in five patients: IMMP2L deletion, PTCH1 duplication, and ATRNL1 deletion. CMA results influenced clinical management, such as imaging studies, specialist referral, and laboratory testing in 71.4% of patients overall, and in 86.0%, 83.3%, 75.0%, and 67.3% of patients with VPS, pathogenic variants, VUS, and benign variants, respectively. CONCLUSIONS: Clinical application of CMA as a first-tier test improves diagnostic yields and the quality of clinical management in patients with DD/ID, ASD, and MCA.
Autism Spectrum Disorder
;
Autistic Disorder
;
Cytogenetics
;
Diagnostic Tests, Routine
;
Down Syndrome
;
Humans
;
Intellectual Disability
;
Korea
;
Microarray Analysis
;
Muscular Dystrophy, Duchenne
;
Prader-Willi Syndrome
;
Prospective Studies
;
Referral and Consultation
;
Specialization
10.Genetic–pathologic characterization of myeloproliferative neoplasms.
Yonggoo KIM ; Joonhong PARK ; Irene JO ; Gun Dong LEE ; Jiyeon KIM ; Ahlm KWON ; Hayoung CHOI ; Woori JANG ; Hyojin CHAE ; Kyungja HAN ; Ki Seong EOM ; Byung Sik CHO ; Sung Eun LEE ; Jinyoung YANG ; Seung Hwan SHIN ; Hyunjung KIM ; Yoon Ho KO ; Haeil PARK ; Jong Youl JIN ; Seungok LEE ; Dong Wook JEKARL ; Seung Ah YAHNG ; Myungshin KIM
Experimental & Molecular Medicine 2016;48(7):e247-
Myeloproliferative neoplasms (MPNs) are clonal hematopoietic stem cell disorders characterized by the proliferation of one or more myeloid lineages. The current study demonstrates that three driver mutations were detected in 82.6% of 407 MPNs with a mutation distribution of JAK2 in 275 (67.6%), CALR in 55 (13.5%) and MPL in 6 (1.5%). The mutations were mutually exclusive in principle except in one patient with both CALR and MPL mutations. The driver mutation directed the pathologic features of MPNs, including lineage hyperplasia, laboratory findings and clinical presentation. JAK2-mutated MPN showed erythroid, granulocytic and/or megakaryocytic hyperplasia whereas CALR- and MPL-mutated MPNs displayed granulocytic and/or megakaryocytic hyperplasia. The lineage hyperplasia was closely associated with a higher mutant allele burden and peripheral cytosis. These findings corroborated that the lineage hyperplasia consisted of clonal proliferation of each hematopoietic lineage acquiring driver mutations. Our study has also demonstrated that bone marrow (BM) fibrosis was associated with disease progression. Patients with overt fibrosis (grade ⩾2) presented an increased mutant allele burden (P<0.001), an increase in chromosomal abnormalities (P<0.001) and a poor prognosis (P<0.001). Moreover, among patients with overt fibrosis, all patients with wild-type JAK2/CALR/MPL (triple-negative) showed genomic alterations by genome-wide microarray study and revealed the poorest overall survival, followed by JAK2-mutated MPNs. The genetic–pathologic characteristics provided the information for understanding disease pathogenesis and the progression of MPNs. The prognostic significance of the driver mutation and BM fibrosis suggests the necessity of a prospective therapeutic strategy to improve the clinical outcome.
Alleles
;
Bone Marrow
;
Chromosome Aberrations
;
Disease Progression
;
Fibrosis
;
Hematopoietic Stem Cells
;
Humans
;
Hyperplasia
;
Prognosis
;
Prospective Studies