1.Ref-1 protects against FeCl3 -induced thrombosis and tissue factor expression via the GSK3β–NF-κB pathway
Ikjun LEE ; Harsha NAGAR ; Seonhee KIM ; Su-jeong CHOI ; Shuyu PIAO ; Moonsang AHN ; Byeong Hwa JEON ; Sang-Ha OH ; Shin Kwang KANG ; Cuk-Seong KIM
The Korean Journal of Physiology and Pharmacology 2021;25(1):59-68
Arterial thrombosis and its associated diseases are considered to constitute a major healthcare problem. Arterial thrombosis, defined as blood clot formation in an artery that interrupts blood circulation, is associated with many cardiovascular diseases. Oxidative stress is one of many important factors that aggravates the pathophysiological process of arterial thrombosis. Apurinic/apyrimidinic endonuclease 1/redox factor-1 (Ref-1) has a multifunctional role in cells that includes the regulation of oxidative stress and anti-inflammatory function. The aim of this study was to investigate the therapeutic effect of adenovirus-mediated Ref-1 overexpression on arterial thrombosis induced by 60% FeCl3 solution in rats. Blood flow was measured to detect the time to occlusion, thrombus formation was detected by hematoxylin and eosin staining, reactive oxygen species (ROS) levels were detected by high-performance liquid chromatography, and the expression of tissue factor and other proteins was detected by Western blot. FeCl3 aggravated thrombus formation in carotid arteries and reduced the time to artery occlusion. Ref-1 significantly delayed arterial obstruction via the inhibition of thrombus formation, especially by downregulating tissue factor expression through the Akt-GSK3β-NF-κB signaling pathway. Ref-1 also reduced the expression of vascular inflammation markers ICAM-1 and VCAM-1, and reduced the level of ROS that contributed to thrombus formation. The results showed that adenovirus-mediated Ref-1 overexpression reduced thrombus formation in the rat carotid artery. In summary, Ref-1 overexpression had anti-thrombotic effects in a carotid artery thrombosis model and could be a target for the treatment of arterial thrombosis.
2.Ref-1 protects against FeCl3 -induced thrombosis and tissue factor expression via the GSK3β–NF-κB pathway
Ikjun LEE ; Harsha NAGAR ; Seonhee KIM ; Su-jeong CHOI ; Shuyu PIAO ; Moonsang AHN ; Byeong Hwa JEON ; Sang-Ha OH ; Shin Kwang KANG ; Cuk-Seong KIM
The Korean Journal of Physiology and Pharmacology 2021;25(1):59-68
Arterial thrombosis and its associated diseases are considered to constitute a major healthcare problem. Arterial thrombosis, defined as blood clot formation in an artery that interrupts blood circulation, is associated with many cardiovascular diseases. Oxidative stress is one of many important factors that aggravates the pathophysiological process of arterial thrombosis. Apurinic/apyrimidinic endonuclease 1/redox factor-1 (Ref-1) has a multifunctional role in cells that includes the regulation of oxidative stress and anti-inflammatory function. The aim of this study was to investigate the therapeutic effect of adenovirus-mediated Ref-1 overexpression on arterial thrombosis induced by 60% FeCl3 solution in rats. Blood flow was measured to detect the time to occlusion, thrombus formation was detected by hematoxylin and eosin staining, reactive oxygen species (ROS) levels were detected by high-performance liquid chromatography, and the expression of tissue factor and other proteins was detected by Western blot. FeCl3 aggravated thrombus formation in carotid arteries and reduced the time to artery occlusion. Ref-1 significantly delayed arterial obstruction via the inhibition of thrombus formation, especially by downregulating tissue factor expression through the Akt-GSK3β-NF-κB signaling pathway. Ref-1 also reduced the expression of vascular inflammation markers ICAM-1 and VCAM-1, and reduced the level of ROS that contributed to thrombus formation. The results showed that adenovirus-mediated Ref-1 overexpression reduced thrombus formation in the rat carotid artery. In summary, Ref-1 overexpression had anti-thrombotic effects in a carotid artery thrombosis model and could be a target for the treatment of arterial thrombosis.
3.p66shc deficiency attenuates high glucose-induced autophagy dysfunction in Schwann cells
Su-Jeong CHOI ; Giang-Huong VU ; Harsha NAGAR ; Seonhee KIM ; Ikjun LEE ; Shuyu PIAO ; Byeong Hwa JEON ; Kaikobad IRANI ; Sang-Ha OH ; Cuk-Seong KIM
The Korean Journal of Physiology and Pharmacology 2025;29(1):57-66
Schwann cells are the most abundant cells in the peripheral nervous system, maintaining the development, function and regeneration of peripheral nerves. Defects in these Schwann cells injury response potentially contribute to the pathogenesis of diabetic peripheral neuropathy (DPN), a common complication of diabetes mellitus. The protein p66shc is essential in regulating oxidative stress responses, autophagy induction and cell survival, and is also vital in the development of DPN. In this study, we hypothesized that p66shc mediates high glucose-induced oxidative stress and autophagic dysfunction. In Schwann cells treated with high glucose; p66shc expression, levels of reactive oxygen species, autophagy impairment, and early apoptosis were elevated. Inhibition of p66shc gene expression by siRNA reversed high glucose-induced oxidative stress, autophagy impairment, and early apoptosis. We also demonstrated that the levels of p66shc was increased, while autophagy-related proteins p62 and LC3 (LC3-II/I) were suppressed in the sciatic nerve of streptozotocin-induced diabetes mice. P66shc-deficient mice exhibited the improvement in autophagy impairment after diabetes onset. Our findings suggest that the p66 plays a crucial role in Schwann cell dysfunction, identifying its potential as a therapeutic target.
4.p66shc deficiency attenuates high glucose-induced autophagy dysfunction in Schwann cells
Su-Jeong CHOI ; Giang-Huong VU ; Harsha NAGAR ; Seonhee KIM ; Ikjun LEE ; Shuyu PIAO ; Byeong Hwa JEON ; Kaikobad IRANI ; Sang-Ha OH ; Cuk-Seong KIM
The Korean Journal of Physiology and Pharmacology 2025;29(1):57-66
Schwann cells are the most abundant cells in the peripheral nervous system, maintaining the development, function and regeneration of peripheral nerves. Defects in these Schwann cells injury response potentially contribute to the pathogenesis of diabetic peripheral neuropathy (DPN), a common complication of diabetes mellitus. The protein p66shc is essential in regulating oxidative stress responses, autophagy induction and cell survival, and is also vital in the development of DPN. In this study, we hypothesized that p66shc mediates high glucose-induced oxidative stress and autophagic dysfunction. In Schwann cells treated with high glucose; p66shc expression, levels of reactive oxygen species, autophagy impairment, and early apoptosis were elevated. Inhibition of p66shc gene expression by siRNA reversed high glucose-induced oxidative stress, autophagy impairment, and early apoptosis. We also demonstrated that the levels of p66shc was increased, while autophagy-related proteins p62 and LC3 (LC3-II/I) were suppressed in the sciatic nerve of streptozotocin-induced diabetes mice. P66shc-deficient mice exhibited the improvement in autophagy impairment after diabetes onset. Our findings suggest that the p66 plays a crucial role in Schwann cell dysfunction, identifying its potential as a therapeutic target.
5.p66shc deficiency attenuates high glucose-induced autophagy dysfunction in Schwann cells
Su-Jeong CHOI ; Giang-Huong VU ; Harsha NAGAR ; Seonhee KIM ; Ikjun LEE ; Shuyu PIAO ; Byeong Hwa JEON ; Kaikobad IRANI ; Sang-Ha OH ; Cuk-Seong KIM
The Korean Journal of Physiology and Pharmacology 2025;29(1):57-66
Schwann cells are the most abundant cells in the peripheral nervous system, maintaining the development, function and regeneration of peripheral nerves. Defects in these Schwann cells injury response potentially contribute to the pathogenesis of diabetic peripheral neuropathy (DPN), a common complication of diabetes mellitus. The protein p66shc is essential in regulating oxidative stress responses, autophagy induction and cell survival, and is also vital in the development of DPN. In this study, we hypothesized that p66shc mediates high glucose-induced oxidative stress and autophagic dysfunction. In Schwann cells treated with high glucose; p66shc expression, levels of reactive oxygen species, autophagy impairment, and early apoptosis were elevated. Inhibition of p66shc gene expression by siRNA reversed high glucose-induced oxidative stress, autophagy impairment, and early apoptosis. We also demonstrated that the levels of p66shc was increased, while autophagy-related proteins p62 and LC3 (LC3-II/I) were suppressed in the sciatic nerve of streptozotocin-induced diabetes mice. P66shc-deficient mice exhibited the improvement in autophagy impairment after diabetes onset. Our findings suggest that the p66 plays a crucial role in Schwann cell dysfunction, identifying its potential as a therapeutic target.
6.p66shc deficiency attenuates high glucose-induced autophagy dysfunction in Schwann cells
Su-Jeong CHOI ; Giang-Huong VU ; Harsha NAGAR ; Seonhee KIM ; Ikjun LEE ; Shuyu PIAO ; Byeong Hwa JEON ; Kaikobad IRANI ; Sang-Ha OH ; Cuk-Seong KIM
The Korean Journal of Physiology and Pharmacology 2025;29(1):57-66
Schwann cells are the most abundant cells in the peripheral nervous system, maintaining the development, function and regeneration of peripheral nerves. Defects in these Schwann cells injury response potentially contribute to the pathogenesis of diabetic peripheral neuropathy (DPN), a common complication of diabetes mellitus. The protein p66shc is essential in regulating oxidative stress responses, autophagy induction and cell survival, and is also vital in the development of DPN. In this study, we hypothesized that p66shc mediates high glucose-induced oxidative stress and autophagic dysfunction. In Schwann cells treated with high glucose; p66shc expression, levels of reactive oxygen species, autophagy impairment, and early apoptosis were elevated. Inhibition of p66shc gene expression by siRNA reversed high glucose-induced oxidative stress, autophagy impairment, and early apoptosis. We also demonstrated that the levels of p66shc was increased, while autophagy-related proteins p62 and LC3 (LC3-II/I) were suppressed in the sciatic nerve of streptozotocin-induced diabetes mice. P66shc-deficient mice exhibited the improvement in autophagy impairment after diabetes onset. Our findings suggest that the p66 plays a crucial role in Schwann cell dysfunction, identifying its potential as a therapeutic target.
7.p66shc deficiency attenuates high glucose-induced autophagy dysfunction in Schwann cells
Su-Jeong CHOI ; Giang-Huong VU ; Harsha NAGAR ; Seonhee KIM ; Ikjun LEE ; Shuyu PIAO ; Byeong Hwa JEON ; Kaikobad IRANI ; Sang-Ha OH ; Cuk-Seong KIM
The Korean Journal of Physiology and Pharmacology 2025;29(1):57-66
Schwann cells are the most abundant cells in the peripheral nervous system, maintaining the development, function and regeneration of peripheral nerves. Defects in these Schwann cells injury response potentially contribute to the pathogenesis of diabetic peripheral neuropathy (DPN), a common complication of diabetes mellitus. The protein p66shc is essential in regulating oxidative stress responses, autophagy induction and cell survival, and is also vital in the development of DPN. In this study, we hypothesized that p66shc mediates high glucose-induced oxidative stress and autophagic dysfunction. In Schwann cells treated with high glucose; p66shc expression, levels of reactive oxygen species, autophagy impairment, and early apoptosis were elevated. Inhibition of p66shc gene expression by siRNA reversed high glucose-induced oxidative stress, autophagy impairment, and early apoptosis. We also demonstrated that the levels of p66shc was increased, while autophagy-related proteins p62 and LC3 (LC3-II/I) were suppressed in the sciatic nerve of streptozotocin-induced diabetes mice. P66shc-deficient mice exhibited the improvement in autophagy impairment after diabetes onset. Our findings suggest that the p66 plays a crucial role in Schwann cell dysfunction, identifying its potential as a therapeutic target.
8.Nafamostat mesilate promotes endothelium-dependent vasorelaxation via the Akt-eNOS dependent pathway.
Sujeong CHOI ; Hyon Jo KWON ; Hee Jung SONG ; Si Wan CHOI ; Harsha NAGAR ; Shuyu PIAO ; Saet Byel JUNG ; Byeong Hwa JEON ; Dong Woon KIM ; Cuk Seong KIM
The Korean Journal of Physiology and Pharmacology 2016;20(5):539-545
Nafamostat mesilate (NM), a synthetic serine protease inhibitor, has anticoagulant and anti-inflammatory properties. The intracellular mediator and external anti-inflammatory external signal in the vascular wall have been reported to protect endothelial cells, in part due to nitric oxide (NO) production. This study was designed to examine whether NM exhibit endothelium dependent vascular relaxation through Akt/endothelial nitric oxide synthase (eNOS) activation and generation of NO. NM enhanced Akt/eNOS phosphorylation and NO production in a dose- and time-dependent manner in human umbilical vein endothelial cells (HUVECs) and aorta tissues obtained from rats treated with various concentrations of NM. NM concomitantly decreased arginase activity, which could increase the available arginine substrate for NO production. Moreover, we investigated whether NM increased NO bioavailability and decreased aortic relaxation response to an eNOS inhibitor in the aorta. These results suggest that NM increases NO generation via the Akt/eNOS signaling pathway, leading to endothelium-dependent vascular relaxation. Therefore, the vasorelaxing action of NM may contribute to the regulation of cardiovascular function.
Animals
;
Aorta
;
Arginase
;
Arginine
;
Biological Availability
;
Endothelial Cells
;
Endothelium
;
Human Umbilical Vein Endothelial Cells
;
Mesylates*
;
Nitric Oxide
;
Nitric Oxide Synthase
;
Nitric Oxide Synthase Type III
;
Phosphorylation
;
Rats
;
Relaxation
;
Serine Proteases
;
Vasodilation*