1.Bioreactor cultivation and mechanical stimulation for regeneration of tissue-engineered cartilage
Xiaoming YU ; Haoye MENG ; Zhen SUN ; Heyong YIN ; Xueling YUAN ; Quanyi GUO ; Jiang PENG ; Aiyuan WANG ; Shibi LU
Chinese Journal of Tissue Engineering Research 2016;(2):185-190
BACKGROUND:Cartilage tissue engineering has been widely used to achieve cartilage regeneration in vitro and repair cartilage defects. Tissue-engineered cartilage mainly consists of chondrocytes, cartilage scaffold and in vitro environment. OBJECTIVE:To mimic the environment of articular cartilage development in vivo, in order to increase the bionic features of tissue-engineered cartilage scaffold and effectiveness of cartilage repair. METHODS: Knee joint chondrocytes were isolated from New Zealand white rabbits, 2 months old, and expanded in vitro. The chondrocytes at passage 2 were seeded onto a scaffold of articular cartilage extracelular matrix in the concentration of 1×106/L to prepare cel-scaffold composites. Cel-scaffold composites were cultivated in an Instron bioreactor with mechanical compression (1 Hz, 3 hours per day, 10% compression) as experimental group for 7, 14, 24, 28 days or cultured staticaly for 1 day as control group. RESULTS AND CONCLUSION:Morphological observations demonstrated that the thickness, elastic modulus and maximum load of the composite in the experimental group were significantly higher than those in the control group, which were positively related to time (P < 0.05). Histological staining showed the proliferation of chondrocytes, formation of cartilage lacuna and synthesis of proteoglycan in the experimental group through hematoxylin-eosin staining and safranin-O staining, which were increased gradualy with mechanical stimulation time. These results were consistent with the findings of proteoglycan kit. Real-time quantitative PCR revealed that mRNA expressions of colagen type I and colagen type II were significantly higher in the experimental group than the control group (P < 0.05). The experimental group showed the highest mRNA expression of colagen type I and colagen type II at 21 and 28 days of mechanical stimulation, respectively (P < 0.05). With the mechanical stimulation of bioreactor, the cel-scaffold composite can produce more extracelular matrix, such as colagen and proteoglycan, strengthen the mechanical properties to be more coincident with thein vivo environment of cartilage development, and increase the bionic features. With the progress of tissue engineering, the clinical bioregeneration of damaged cartilage wil be achieved.
2.Degradation of AZ31 magnesium alloysin vivo:micro-CT assessment
Yichi XU ; Heyong YIN ; Zhen SUN ; Haoye MENG ; Bo XIAO ; Aiyuan WANG ; Quanyi GUO ; Jiang PENG ; Shibi LU
Chinese Journal of Tissue Engineering Research 2016;20(16):2303-2309
BACKGROUND:Magnesium can be degraded voluntarily in vivo, so a second surgery is avoided. However, its aloys have not been widely used in the clinical orthopedics because there is a lack of accurate and reliable methods to assess its degradationin vivo.
OBJECTIVE:To explore the degradation of micro-arc-oxidized AZ31 magnesium aloy in the femoral condyle of rabbits based on micro-CT images and relative data.
METHODS:Forty micro-arc-oxidized AZ31 magnesium aloys were implanted into the right femoral condyle of 40 New Zealand rabbits. Then 10 right femoral condyles were removed at 5, 10, 15 and 20 weeks after surgery, respectively, to quantitatively analyze and evaluate the degradation of AZ31 magnesium aloys by micro-CT images and relative data.
RESULTS AND CONCLUSION:The surface of AZ31 aloys was corroded progressively with dark color and distorted appearance at 5-20 weeks post implantation. Micro-CT images showed that in the first 5 weeks, the degradation was inactive, and at the 10th week, it turned active; at the 15th week, the corrosion pits were obviously increased in number, and the corrosion area and corrosion speed were enlarged and fastened, respectively. Up to the 20th week, the aloy surfaces were ful of corrosion pits besides roughness and discontinuity. Relevant data analysis showed that the volume fraction of magnesium aloy was 98.6%, 97.1% and 86.4% at the 5th, 10th and 20th weeks after implantation, respectively, and it had a significant decrease from the 10th to 15th week and from the 15th to 20th week (P < 0.05). Within 15-20 weeks, the volume fraction of magnesium aloy was decreased by 6.5% that was the maximum volume reduction per unit cycle. With the progress of corrosion, the surface continuously became rough and vague, and its surface area was enlarged; the ratio of surface area to volume continuously increased, and there was a significant difference at 15 and 20 weeks (P < 0.05). Because of the increasing number of corrosion pits, the cross-sectional radius decreased, which was reflected by the trabecular thickness decreasing from 1.00 to 0.87 mm. From the view of the slope of curve, the trabecular thickness decreased most rapidly at 10-15 weeks. The mineral density of magnesium aloy continuously decreased from 649.302 to 356.445 mg/cm3 during the whole experiment period (P< 0.05). In addition, the micro-CT image density decreased from 679.710 to 644.947 mg/cm3, but there was no significant difference. To conclude, the degradation speed is peaked at 10-20 weeks after implantation, and the content of magnesium aloys decrease with degradation, but the magnesium density has no significant change.
3.Systematic Review and Sequential Analysis of Efficacy and Safety of Baogong Zhixue Granules for the Treatment of Abnormal Uterine Bleeding due to Ovulation Disorder
Xinyin HU ; Xuhan SU ; Haoye PENG ; Zuolin TAN ; Yunqing LI ; Yuhua HUANG
Chinese Journal of Information on Traditional Chinese Medicine 2024;31(3):48-55
Objective To systematically evaluate and sequentially analyze the clinical efficacy and safety of Baogong Zhixue Granules for the treatment of abnormal uterine bleeding due to ovulation disorder.Methods The randomized controlled trials(RCTs)of Baogong Zhixue Granules for the treatment of abnormal uterine bleeding due to ovulation disorder were retrieved from the databases of CNKI,Wanfang Data,VIP,China Biology Medicine,PubMed,Embase,and Cochrane Library from the establishment of the databases to January 5th,2023.Literature screening and data extraction were conducted according to Cochrane Handbook for Systematic Reviews of Interventions,and Meta-analysis was performed by RevMan 5.4.Results Totally 15 articles were included,involving 1 425 patients.Meta-analysis results showed that Baogong Zhixue Granules could effectively improve the clinical efficacy of abnormal uterine bleeding due to ovulatory disorder(RR=1.17,95%CI[1.13,1.23],P<0.000 01),shorten hemostasis time[bleeding control time(MD=-6.35,95%CI[-8.89,-3.81],P<0.000 01),complete hemostasis time(MD=-12.56,95%CI[-16.22,-8.89],P<0.000 01)],reduce endometrial thickness(MD=-1.26,95%CI[-1.71,-0.80],P<0.000 01),reduce hemoglobin loss(MD=13.35,95%CI[11.41,15.29],P<0.000 01),improve the score of uterine bleeding(MD=-2.22,95%CI[-2.43,-2.01],P<0.000 01),and reduce the recurrence of disease(RR=0.37,95%CI[0.19,0.72],P=0.004).There was no statistical significance between the test group and the control group in terms of adverse reactions(P=0.82).The trial sequential analysis of the total efficiency was carried out,and the cumulative included research passed the traditional threshold and trail sequential analysis threshold.Conclusion Baogong Zhixue Granules have a certain clinical efficacy in the treatment of abnormal uterine bleeding due to ovulation disorder,but there may be publication bias in the study,and higher quality clinical RCTs need to be carried out.
4.Effects of bone-resorptive lesion on stress distribution of the femoral head and on progression in patients with osteonecrosis of the femoral head
Guangbo LIU ; Yuqian MEI ; Haiyang MA ; Qiang LU ; Haoye MENG ; Qi QUAN ; Yuxuan ZHANG ; Jun ZHAO ; Huo LI ; Aiyuan WANG ; Haili XIN ; Duanduan CHEN ; Shibi LU ; Jiang PENG
Chinese Journal of Orthopaedics 2020;40(7):408-416
Objective:To investigate effects of bone-resorptive lesion on stress distribution of femoral head and on progression in patients with osteonecrosis of the femoral head (ONFH).Methods:From April 2014 to September 2018, a total of 155 femoral heads from 94 patients diagnosed with ARCO stage II and III ONFH were retrospectively reviewed, including 77 males and 17 females with aged 39.90±10.45 years old (ranged from 18-64 years). The hips were divided into two groups according to whether there were bone-resorptive lesions. Further, we compared whether there was statistical difference between the two groups in staging. Then, a case of ARCO II hip joint without bone-resorptive lesion was selected from the included patients. Six femoral head with different diameters of spherical bone-resorptive lesion of 5 mm, 7 mm, 10 mm, 14 mm, 18 mm, and 23 mm were simulated. The influence of bone-resorptive lesion on the stress distribution of necrotic area and a spherical shell extending 1 mm radially around the bone-resorptive lesion was investigated by finite element method in slow walking conditions.Results:Of the 155 ONFH hips, 67 hips are complicated by bone-resorptive lesions, of which 17 were ARCO II, 50 were ARCO III. A total of 88 hips did not contain bone-resorptive lesions, of which 58 were ARCO II, ARCO III 30 cases. The proportion of ARCO stage II in the group with bone-resorptive lesions was significantly higher than that in the group without bone-resorptive lesions (χ 2=25.03, P=0.000). The finite element stress distribution cloud diagram showed that there was a stress concentration area around the bone-resorptive lesions. The maximum von Mises stress around bone-resorptive lesions in the models that contained a synthetic bone-resorptive lesions were significantly higher than those reported in the matched, non-synthetic bone-resorptive lesions finite element models ( t=3.139, P=0.026). The values for maximum von Mises stress around bone-resorptive lesions were 6.94±1.78 MPa and 5.01±0.35 MPa for the group with synthetic bone-resorptive lesions and the group non-synthetic bone-resorptive lesions, respectively. There was a positive correlation between the diameter of bone-resorptive lesions and the maximum and mean von Mises stress of necrotic areas as well as the maximum von Mises stress around bone-resorptive lesions. Conclusion:Bone-resorptive lesions can increase the maximum stress and average stress in the necrotic area. The larger the bone-resorptive lesion, the more the stress increases. There is a stress concentration area around the bone-resorptive lesions, which may accelerate the collapse of the femoral head.