1.Expression and Clinical Significance of MKI67 in Pancreatic Cancer
Hu WANG ; Yanmei YIN ; Haoxuan DU ; Hao CHEN ; Xiaopeng MA ; Aibin DAI ; Kexiang ZHU
Cancer Research on Prevention and Treatment 2024;51(2):91-98
Objectives To explore the expression, biological function, and mechanism of MKI67 in pancreatic cancer and its clinical significance. Methods The expression level, diagnosis, and prognostic value of MKI67 in pancreatic cancer were analyzed using public databases. We also investigated the association between the MKI67 with immune cell infiltration and immune checkpoint molecules. We analyzed the functional pathway enrichment to uncover the possible molecular mechanisms. qRT-PCR and Western blot assay were used to verify the expression of MKI67 mRNA and protein. Immunohistochemistry staining was used to detect the expression of MKI67 in tissue protein. Results The high expression of MKI67 was significantly associated with high histological grades and poor outcomes in pancreatic cancer. High MKI67 expression was correlated with poor prognosis of pancreatic cancer patients (
2.Cross-Modal Interaction and Integration Through Stimulus-Specific Adaptation in the Thalamic Reticular Nucleus of Rats.
Yumei GONG ; Yuying ZHAI ; Xinyu DU ; Peirun SONG ; Haoxuan XU ; Qichen ZHANG ; Xiongjie YU
Neuroscience Bulletin 2022;38(7):785-795
Stimulus-specific adaptation (SSA), defined as a decrease in responses to a common stimulus that only partially generalizes to other rare stimuli, is a widespread phenomenon in the brain that is believed to be related to novelty detection. Although cross-modal sensory processing is also a widespread phenomenon, the interaction between the two phenomena is not well understood. In this study, the thalamic reticular nucleus (TRN), which is regarded as a hub of the attentional system that contains multi-modal neurons, was investigated. The results showed that SSA existed in an interactive oddball stimulation, which mimics stimulation changes from one modality to another. In the bimodal integration, SSA to bimodal stimulation was stronger than to visual stimulation alone but similar to auditory stimulation alone, which indicated a limited integrative effect. Collectively, the present results provide evidence for independent cross-modal processing in bimodal TRN neurons.
Acoustic Stimulation
;
Animals
;
Auditory Perception/physiology*
;
Geniculate Bodies
;
Rats
;
Rats, Wistar
;
Thalamic Nuclei/physiology*