1.3D construction and printing of bone tissue engineering scaffolds based on CT data
Haotian YUAN ; Shuman SHI ; Xiaoxiao ZHANG ; Jing LI ; Zhe WU
The Journal of Practical Medicine 2016;32(14):2319-2322
Objective To study 3D construction and printing of bone tissue engineering scaffolds by bone defect modeling on Mimics software based on CT data. Methods CT data of jaw bone defect from patients were acquired and the images were segmented using threshold segmentation combined with region growing . The three dimensional model was reconstructed by Boolean operation. The individual 3D digital model was reconstructed with internal structure by combining with computer; preparing poly-lactic acid scaffold in virtue of 3D technology. Results Using the Mimics software, we successfully constructed a 3D digital reconstruction model of bone defect based on CT data. The constructed scaffold model with certain internal form and structure was matched with the bone defect of patients, and the constructed model was exported onto STL standard format, which may be in common use. Conclusion The 3D digital model of bone defect scaffolds may effectively be reconstructed based on the CT data using Mimics software and computer aided design.
2.Microanatomical study of the scapholunate interosseous ligament with micro-CT
Yujian XU ; Yongqing XU ; Haotian LUO ; Xiaoqing HE ; Xulin ZHANG ; Wanqiu ZHAO ; Huan WU ; Libo YUAN
Chinese Journal of Microsurgery 2020;43(1):56-60
Objective:To explore the morphology and vessel distribution of the scapholunate interosseous ligament and anatomical basis for the clinical reconstruction of scapholunate interosseous ligament.Methods:From October, 2018 to December, 2018, 12 fresh wrist joint specimens were perfused with gelatin-lead oxide solution from ulnar or radial artery and scanned under micro-CT. The morphology of scapholunate interosseous ligament in neutral position and the distribution of nutrient vessels in the ligament were observed on reconstructed 3D images by Mimics. The width, length and thickness of palmar, dorsal and proximal ligaments were measured. The anatomical parameters at the entrance of nutrient vessels in the scapholunate interosseous ligament were taken and their relationship with the blood supply to the scapholunate was analyzed.Results:①For scapholunate interosseous ligament, it was found that the average length of the proximal sub-region was the longest, the length of palmar and dorsal sides was similar to each other and the widest and thinnest was in palmar side, while the thickness and width of dorsal and proximal were similar. ②There was no nutrient vessel in the proximal part of the scapholunate interosseous ligament. But there were abundant nutrient vessels in the palmar and dorsal scapholunate interosseous ligament, and there was no significant difference in blood supply to palmar and dorsal scapholunate interosseous ligament ( P>0.05). ③The palmar and dorsal medial nutrient vessels that supply to the scapholunate interosseous ligament enter the scapholunate from the attachment of ligament of scapholunate interosseous joint. Conclusion:The palmar side of the scapholunate interosseous ligament is wider and thinner than that of the other subareas, which makes it more vulnerable to injury from an anatomical point of view. There is abundant blood supply to the palmar and dorsal subareas of the scapholunate interosseous ligament and the supplying vessels anastomose inside the scapholunate bone. There is no distribution of blood vessel at the proximal part of scapholunate interosseous ligament, hence is difficult to heal. An injury of palmar and dorsal ligaments may affect the blood supply of scapholunate.