1.Anti-inflammatory Mechanism of Modified Erchentang on Chronic Obstructive Pulmonary Disease Through Jagged1/Notch1/Hes1 Signaling Pathway
Lizhi SHANG ; Shu JI ; Yaoyang LI ; Wenhao HU ; Wenying XIE ; Zhuang CHEN ; Gaoyang LIU ; Haofan SHANG ; Hongwei WANG
Chinese Journal of Experimental Traditional Medical Formulae 2023;29(9):109-118
ObjectiveTo observe the effect of modified Erchentang on the expression of key molecules in the Jagged1/Notch1/Hes1 signaling pathway in lung tissues of rats with chronic obstructive pulmonary disease (COPD) and explore its anti-inflammatory effect and molecular mechanism on COPD through the Jagged1/Notch1/Hes1 signaling pathway. MethodSixty SD rats were randomly divided into normal group, model group, low-, medium-, and high-dose modified Erchentang groups (5, 10, 20 g·kg-1), and γ-secretase inhibitor DAPT group (0.02 g·kg-1), with 10 rats in each group. The COPD model was induced in rats by cigarette smoking combined with intratracheal instillation of lipopolysaccharide (LPS). Rats were treated with corresponding drugs by gavage, while those in the normal group and the model group were treated with the same amount of normal saline by gavage. The serum levels of Notch1, soluble intercellular adhesion molecule-1 (sICAM-1), activated leukocyte cell adhesion molecule (ALCAM), and soluble vascular adhesion molecule-1 (sVCAM-1) were detected by enzyme-linked immunosorbent assay (ELISA). The mRNA expression of Jagged1, Notch1, and Hes1 was detected by Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR). The protein expression of Jagged1, Notch1, Notch1 intracellular domain (NICD1), and Hes1 in lung tissues of rats was detected by immunohistochemistry (IHC). ResultCompared with the normal group, the model group showed increased serum content of Notch1, sICAM-1, ALCAM, and sVCAM-1 (P<0.01), increased mRNA expression of Jagged1, Notch1, and Hes1 in lung tissues (P<0.01), and increased protein expression of Jagged1, Notch1, NICD1, and Hes1 (P<0.01). Compared with the model group, the medium- and high-dose modified Erchentang groups and the DAPT group showed decreased serum content of Notch1, sICAM-1, ALCAM, and sVCAM-1 (P<0.05, P<0.05), down-regulated mRNA expression of Jagged1, Notch1, and Hes1 (P<0.05, P<0.01), and reduced protein expression of Jagged1, Notch1, NICD1, and Hes1(P<0.05, P<0.01). ConclusionModified Erchentang may inhibit the inflammatory response in the lung of COPD rats, and its mechanism may be related to the resistance of inflammatory injury in the lung by decreasing the mRNA expression of Jagged1, Notch1, and Hes1 and inhibiting the release of Notch1, sICAM-1, ALCAM, and sVCAM-1.
2.Effect of Modified Erchentang on Bronchioles of Rats with Chronic Obstructive Pulmonary Disease by HMGB1/RAGE/NF-κB Signaling Pathway
Lizhi SHANG ; Yaoyang LI ; Shu JI ; Wenying XIE ; Haofan SHANG ; Zhuang CHEN ; Gaoyang LIU ; Qi WANG
Chinese Journal of Experimental Traditional Medical Formulae 2023;29(6):44-54
ObjectiveTo study the effect of modified Erchentang on the expression of key molecules in the high mobility group Box 1 protein (HMGB1)/receptor for advanced glycation endproduct (RAGE)/nuclear factor-κB (NF-κB) signaling pathway in bronchioles of rats with chronic obstructive pulmonary disease (COPD), to explore the mechanism of modified Erchentang against bronchiolar inflammation of COPD rats via HMGB1/RAGE/NF-κB signaling pathway. MethodSixty SD rats were randomly divided into normal group, model group, modified Erchentang low-, medium- and high-dose groups (5, 10, 20 g·kg-1·d-1) and ethyl pyruvate (HMGB1 inhibitor) group, with 10 in each group. The COPD rat model was prepared by cigarette smoke combined with tracheal injection of lipopolysaccharide (LPS). After modeling, the modified Erchentang groups were given corresponding drugs (ig) and Ringer's solution (4 mL, ip), while the EP group was treated with equal volume of normal saline (ig) and EP (0.04 g·kg-1·d-1, ip). The normal group and the model group received equal volume of normal saline (ig) and Ringer's solution (ip) for 21 consecutive days. The contents of HMGB1, chemokine (C-X-C motif) ligand 1 (CXCL1), CXCL2 and monocyte chemotactic protein-1 (MCP-1) in bronchoalveolar lavage fluid (BALF) were detected by enzyme-linked immunosorbent assay (ELISA). The mRNA expressions of HMGB1, RAGE and NF-κB p65 were determined by Real-time polymerase chain reaction (Real-time PCR), and the protein expressions of HMGB1, RAGE, p-NF-κB p65, and alpha-smooth muscle actin (α-SMA) in bronchioles tissue of rats were determined by immunohistochemistry (IHC). ResultCompared with the conditions in the normal group, the forced vital capacity (FVC), forced expiratory volume in the first second (FEV1) and FEV1/FVC in the model group were decreased (P<0.01) while the contents of HMGB1, CXCL1, CXCL2 and MCP-1 in BALF were increased (P<0.01). And the model group presented higher mRNA expressions of HMGB1, RAGE and NF-κB p65 (P<0.01) and protein expressions of HMGB1, RAGE, p-NF-κB p65 and α-SMA (P<0.05, P<0.01) than the normal group. Compared with the model group, the modified Erchentang medium- and high-dose groups had increased FEV1/FVC (P<0.05, P<0.01), lowered contents of HMGB1, CXCL1, CXCL2 and MCP-1 in BALF (P<0.05, P<0.05), and reduced mRNA expressions of HMGB1, RAGE and NF-κB p65 (P<0.05, P<0.01) and protein expressions of HMGB1, RAGE, p-NF-κB p65 and α-SMA (P<0.05, P<0.01). ConclusionModified Erchentang can resist bronchiolar inflammation of COPD rats. The mechanism may be related to down-regulating the mRNA expressiona of HMGB1 and RAGE, inhibiting the activity of NF-κB, and reducing the release of HMGB1, CXCL1, CXCL2 and MCP-1, thus suppressing the inflammatory injury and abnormal repair of bronchioles.